NATIONAL REGISTER OF HISTORIC PLACES
INVENTORY -- NOMINATION FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1 NAME

HISTORIC
Pupin Physics Laboratories, Columbia University

AND/OR COMMON
Pupin Physics Laboratories

2 LOCATION

STREET & NUMBER
Broadway and West 120th Street

CITY, TOWN
New York

STATE
New York

3 CLASSIFICATION

CATEGORY
X DISTRICT
— BUILDING(S)
— STRUCTURE
— OBJECT

OWNERSHIP
PUBLIC
PRIVATE
BOTH

PUBLIC ACQUISITION
IN PROCESS
BEING CONSIDERED

STATUS
X OCCUPIED
— UNOCCUPIED
— WORK IN PROGRESS
— ACCESSIBLE

PRESENT USE
AGRICULTURE
COMMERCIAL
EDUCATIONAL
PRIVATE RESIDENCE
ENTERTAINMENT
GOVERNMENT
INDUSTRIAL
TRANSPORTATION
MILITARY
OTHER:

4 OWNER OF PROPERTY

NAME
Columbia University

STREET & NUMBER
Broadway and West 120th Street

CITY, TOWN
New York

STATE
New York

5 LOCATION OF LEGAL DESCRIPTION

COURTHOUSE, REGISTRY OF DEEDS, ETC.
New York County Hall of Records

STREET & NUMBER
31 Chambers Street

CITY, TOWN
New York

STATE
New York

6 REPRESENTATION IN EXISTING SURVEYS

TITLE

DATE

FEDERAL
STATE
COUNTY
LOCAL

DEPOSITORY FOR SURVEY RECORDS

CITY, TOWN

STATE
The Pupin Physics Laboratories is a brick structure of 10 stories with stone trim on corners and cornice. The windows are single sash one over one with single stone flat hood. The laboratories in which the cyclotron and its associated activities were kept occupy the entire basement floor of the building.

Originally to the right of a flight of stairs that lead down from the ground floor was a corridor that led to the control room for the cyclotron. Just beyond the control room was an area closed off by large, tall water tanks which shielded against radiation. Inside the wall formed by the tanks was the cyclotron. However, the cyclotron was dismantled in 1964 and sent to the Smithsonian Institution in Washington, but the huge magnet used in the experiment is still in the laboratory. Both the experimental and control rooms are still being used for experimental purposes but not for any radioactive use. Both rooms are full of lab equipment and crowded with various kinds of paraphernalia. The Pupin Physics Laboratories is the functioning Physics Building of Columbia University. In this building 33 full-time faculty members teach 1,120 undergraduates and 114 graduate students. The building, including the experimental and control rooms are not open to the public.
The cyclotron magnet which first split the uranium atom in the New World, on January 25, 1939, is located within the basement laboratory of the Pupin Physics Building of Columbia University, Broadway and West 120th Street, New York, New York. This event followed by only 10 days the world's first atom-splitting in Copenhagen, Denmark.

Dr. Enrico Fermi, a refugee from Fascism, had just joined the Columbia University faculty when news came of an atomic breakthrough in Copenhagen. He immediately assembled his colleagues and planned an attempt to verify the amazing news. Fermi was called to Washington on the day of the experiment, which was carried out by Dr. John R. Dunning and several colleagues. The first attempt was successful and, after several repetitions to eliminate the possibility of error, Dr. Dunning recorded in his laboratory notebook: "Here is real atomic energy."

The cyclotron magnet is located in a basement laboratory. To the right of a flight of steps leading down from the ground floor is a corridor that leads to the cyclotron control room, which has been converted to a storage area. Only the great magnet still remains of the atom-splitting apparatus. The other basement labs, which flank the central corridor, are still in use as laboratory work areas.

During the 1930's, European and American scientists had been making steady progress in their quest to unleash the power of the atom. Enrico Fermi contributed a major advance when in 1934 he and his colleagues bombarded a uranium atom with neutrons and proved the possibility of atomic energy. Subsequent work led to further advances, and on January 15, 1939, two German exiles, Dr. Lise Meitner and Dr. Otto R. Frisch, successfully split the uranium atom in Copenhagen, liberating some 200,000,000 volts. At about the same time, Fermi, also an exile from Fascism, arrived in the United States to join the faculty at Columbia University. When news of the Meitner-Frisch success reached Fermi, he assembled those at Columbia who had been working on atomic energy and discussed the epochal event with them. It was then planned to conduct experiments to verify the amazing news from Denmark.

The experiment devised aimed at studying the ionization, or electrical pulses, that would be released after uranium atoms had been split. These pulses were to be watched on an oscilloscope, which has been described "as a species of atomic thermometer." The energy, or pulses, is transformed into lines on an oscilloscope and can thus be observed. On the day of the experiments, Fermi had to go to
9 MAJOR BIBLIOGRAPHICAL REFERENCES

10 GEOGRAPHICAL DATA
ACREAGE OF NOMINATED PROPERTY less than 1 acre
UTM REFERENCES
ZONE EASTING NORTING
A 1 8 5 8 7 5 9 0 4 5 1 7 9 8 0
B
C
D
VERBAL BOUNDARY DESCRIPTION
The boundaries of the landmark are coterminous with those of the Pupin Physics Laboratories building. Beginning approximately 160' east of the southwest intersection of Broadway and 120th Street, at the northwest corner of the Pupin building, proceed east along the north facade of the building for approximately 225' to the northeast corner of the building, thence proceed south along the east side of the building for approximately 80' to the southeast corner of the building,

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES
<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 FORM PREPARED BY
NAME / TITLE
Cecil McKithan, Historian
ORGANIZATION
Historic Sites Survey
STREET & NUMBER
1100 L Street, NW.
CITY OR TOWN
Washington,
STATE
D. C.
DATE
March 1978
TELEPHONE
523-5464

12 STATE HISTORIC PRESERVATION OFFICER CERTIFICATION
THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:
NATIONAL ___ STATE ___ LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act, P.L. 90-525 (Public Law 89-665). I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

STATE HISTORIC PRESERVATION OFFICER SIGNATURE

FOR NPS USE ONLY
I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER
DATE
ATTEST:
KEEPER OF THE NATIONAL REGISTER
Washington and Dr. John R. Dunning, with some colleagues, carried out the investigation.

Outside, a cold wind raced through the campus as Dunning and Drs. E. T. Booth and F. G. Slack prepared for the experiment. After laborious efforts in readying the cyclotron, all was ready for the attempt to split the uranium atom. Then the bombardment began, and

Suddenly, huge green lines began to shoot up in the circle of the oscilloscope screen. They leaped high and seemed to jump from the screen and they stunned the scientists. He'd [Dunning] never seen anything like it before. He quickly calculated that between 150 and 200 million electron volts were being generated. At that rate one pound of Uranium-235 could yield as much energy as 5 million pounds of coal.

Afraid that something might have gone wrong, Dunning carefully checked the cyclotron and other apparatus, but found nothing amiss. He then repeated the experiment many times and by about midnight was convinced that atomic energy could be released.

The fascination of the night's work is added to by the notes jotted down in a laboratory notebook by Dunning. They, like the journal of a soldier kept during a campaign, bring us close to a major historical event. The first sentence for January 25, 1939, reads, "Believe we have observed new phenomenon of far reaching consequences." After relating, in technical language, how he prepared the cyclotron and then began the experiment, Dunning wrote, "Observed very large kicks [green lines] on oscillograph!" And after further observations about the experiment, the physicist commented "here is real atomic energy."

Dunning, who had long worked on the problem of releasing atomic energy, realized the significance of the night's work. Furthermore, continued experimentation during the following several days convinced him of the possibility of a chain reaction, which, if uncontrolled, could unleash a tremendous amount of energy in a split second. The young scientist also grasped the political and military implications of his work, and he noted in his journal on January 27 that he and his colleagues

Agreed to keep it rigorously quiet in view of serious implications of atomic energy release internationally.

The culmination of the enquiry of the scientists into atomic energy on January 15 in Europe and on January 25 in the United States remains a turning point in world history. Dunning's success resulted in Federal support for atomic research at Columbia that led to the development of the "Manhattan District Project" and the subsequent production of the atomic bomb.

3Quoted from "Extracts from the Notebooks of John R. Dunning," Columbia University (n.p., n.d.)

4His italics, Ibid.
Geographical Data

thence proceed west along the south (rear) facade of the building to the southwest corner of the building, thence proceed north along the west side of the building to the point of origin. These boundaries enclose the landmark within the physical dimensions of the building.