
Physics Placement Exam: Classical Mechanics and Electromagnetism
07-Sep-23

Please do all six problems. Generous partial credit may be awarded to partial solutions provided your
work is organized and legible. Note that various formulas that may be useful are at the end of the exam.

You must not use your phone, calculator, or any other device with messaging capabilities during the
exam.

Problem 1: A mass m is free to slide along a frictionless horizontal rail. A spring with spring constant
k and rest length 2a is attached to the mass such that one end moves with the mass, and the other is
fixed to the ceiling above. The ceiling is located at perpendicular height a from the rail such that when
the spring is oriented vertically, it is compressed to half its rest length. Ignore any gravity effects in this
problem.

a) Write down an expression for the potential energy of the system as a function of the displacement
of the mass along the rail. Take the elastic potential to be zero valued when the spring is
unstretched.

b) Find any equilibrium positions and identify whether they are stable or unstable. [Hint: there are
two stable and one unstable points.]

c) Imagine the mass is at rest at one of the stable points, when it is given a speed, instantaneously.
What minimum speed would be required in order for the mass to travel all the way to the other
stable point?

Problem 2: A frictionless, uniform rope of total length L and mass m is placed on a table such that
initially a portion of the rope, length l, hangs vertically off the edge. Imagine that the rope is released
from rest and assume the hanging portion always remains vertical.
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a) Using the length of the rope that hangs vertically as the generalized coordinate (see Fig.), write
down a Lagrangian for this system.

b) Find an expression for the acceleration of the rope.

c) Find an expression for the length of rope that hangs off the table versus time.

Problem 3: The Lagrangian for a physical system is given by

L =
m

2
ẋ2eλt . (1)

Using only conserved quantities, find a general solution to the motion of the system described by the
Lagrangian.
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Problem 4: A spherical ball of radius a contains a charge density on the surface given by
σ(θ) = σ0(1− cos θ) where θ is the conventional polar angle in spherical coordinates
and σ0 is a positive constant.

For parts (a) -(c), assume that the shell is non-conducting, and no other charges exist in space.
(a) Calculate the potential for r > a .
(b) Calculate the electric field everywhere in space and draw the field lines.
(c) Calculate all the multipole moments of the charge distribution (hint: use your result from part (a) to
make the calculation quick) .

For parts (d)-(e) assume that the sphere is conducting. Assume that the charge density given above is
on the outer surface of the sphere.
(d) Calculate the electric potential for r > a.
(e) What is the electric field everywhere in space? What part of this field is applied external to the
conducting shell?

Problem 5: A thin disk of radius R has its normal along z. This disk has a uniform surface charge σ
and rotates at a constant angular velocity ω in the counterclockwise direction when viewed from a point
on the positive z-axis.
(a) Write down an expression for the surface current density K of the disk as a function of cylindrical
coordinates. Make sure to specify both the magnitude and direction.
(b) Find an expression for the magnetic field on the z-axis for z > 0.
(c) Show that the results agree with the form of a magnetic dipole at long distances. Identify the
magnitude of the magnetic dipole moment. You may make use of the expansion for ε� 1,

1√
1 + ε

= 1− 1

2
ε+

3

8
ε2 + . . .

(d) Calculate the magnetic dipole moment of the disk directly and show that it agrees with your answer
in part (c) .

Problem 6: An electric dipole at the origin is oscillating in magnitude with an angular frequency ω so
that the dipole moment is given by p = p0 cosωt ẑ .
(a) Explain how conservation of energy requires, at large distances, that both the electric and magnetic
field must decrease with distance from the origin as 1/r. In particular, explain why the fields cannot
decrease as 1/rα with α 6= 1 .
(b) At large distance from the origin, the magnetic field, in spherical coordinates, is given by

B(r, t) = −µ0p0ω
2

4πc
sin θ

cosω(t− r/c)
r

φ̂

Write down the full expression for the electric field E(r, t) at large distances. Briefly justify your answer.
(c) How does the power emitted by the dipole vary as a function of the angle θ between p and the line
of sight of an observer? Illustrate the power pattern d〈P 〉/dΩ with a simple drawing, where 〈P 〉 is the
time-averaged power radiated by the dipole.
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Potentially Useful Equations and Definitions

Noether theorem: In classical mechanics, if a Lagrangian L(x, ẋ) is invariant under an infinitesimal
transformation

t→ t+ ε∆t , x→ x+ ε∆x (2)

for given ∆t and ∆x and for arbitrary (infinitesimal ε), then the quantity

Q =
∂L

∂ẋ
∆x+

(
L− ∂L

∂ẋ
ẋ

)
∆t (3)

is conserved.

Cylindrical coordinates: x = s cosφ, y = s sinφ, z = z, s =
√
x2 + y2

∇t =
∂t

∂s
ŝ +

1

s

∂t

∂φ
φ̂+

∂t

∂z
ẑ

∇ · v =
1

s

∂(svs)

∂s
+

1

s

∂vφ
∂φ

+
∂vz
∂z

∇× v =

[
1

s

∂vz
∂φ
−
∂vφ
∂z

]
ŝ +

[
∂vs
∂z
− ∂vz

∂s

]
φ̂+

1

s

[
∂(svφ)

∂s
− ∂vs
∂φ

]
ẑ

∇2t =
1

s

∂

∂s

(
s
∂t

∂s

)
+

1

s2
∂2t

∂φ2
+
∂2t

∂z2

Spherical coordinates: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ .

∇t =
∂t

∂r
r̂ +

1

r

∂t

∂θ
θ̂ +

1

r sin θ

∂t

∂φ
φ̂

∇ · v =
1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θ vθ) +

1

r sin θ

∂vφ
∂φ

∇× v =
1

r sin θ

[
∂(sin θ vφ)

∂θ
− ∂vθ
∂φ

]
r̂ +

1

r

[
1

sin θ

∂vr
∂φ
−
∂(rvφ)

∂r

]
θ̂ +

1

r

[
∂(rvθ)

∂r
− ∂vr

∂θ

]
φ̂

∇2t =
1

r2
∂

∂r

(
r2
∂t

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂t

∂θ

)
+

1

r2 sin2 θ

∂2t

∂φ2

Solutions when there is no φ dependence:

Φ(r, θ) =

∞∑
l=0

[
Al r

l +
Bl
rl+1

]
Pl(cos θ) satisfies ∇2Φ = 0 .

P0(u) = 1 , P1(u) = u , P2(u) =
3

2
u2 − 1

2
, P3(u) =

5

2
u3 − 3

2
u

∫ 1

−1
Pm(u)Pn(u) du =

2

2n+ 1
δm,n
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Electrostatic energy (W ):

Discrete charges:

W =
1

8πε0

n∑
i=1

n∑
j 6=i

qiqj
rij

Continuous charge distribution:

W =
ε0
2

∫
E(r) ·E(r) d3r =

1

2

∫
ρ(r)Φ(r) d3r

Field from magnetic dipole:

B(r) =
µ0
4π

3m · r̂−m

r3

Energy density and flux, momentum density:

u =
1

2
ε0 E ·E +

1

2µ0
B ·B , S =

1

µ0
E×B , g = ε0(E×B)

Speed of light, impedance of the vacuum:

µ0ε0 =
1

c2
, µ0c = 377 Ω

5



Physics Placement Exam
Quantum Mechanics, Statistical Mechanics and Thermodynamics

08-Sep-23

Please do all six problems. Generous partial credit may be awarded to partial solutions provided your
work is organized and legible. Note that various formulas that may be useful are at the end of the exam.

You must not use your phone, calculator, or any other device with messaging capabilities during the
exam.

Problem 1:

A spin-1 particle with charge q is in a uniform magnetic field of magnitude B directed along the +z axis.
At time t = 0 the particle is known to be in a state satisfying Ŝx|ψ〉 = ~|ψ〉.

(a) Find |ψ(t)〉.

(b) Find the time dependence of the expectation value for all three components of the spin operator Ŝ.

Problem 2:

Consider the Hamiltonian:

Ĥ =
p̂2x
2m

+
1

2
mω2x̂2 + λp̂2x.

We can rewrite this Hamiltonian as Ĥ = Ĥ0 + V̂ , such that

Ĥ0 =
p̂2x
2m

+
1

2
mω2x̂2

V̂ = λp̂2x,

with λ being very small. For this problem, work in the eigenstates such that Ĥ0 |n〉 = En |n〉.

(a) What is the first order correction to the ground state energy?

(b) What is the first order correction to the ground state wavefunction?

(c) Calculate the energy spectrum exactly and compare your results in (a).

Problem 3:

Consider the following operators in a complete orthonormal basis of pure states |1〉 and |2〉 of the
Hilbert space:

ρA =

(
1 i
−i 0

)
, ρB =

(
1/2 i/2
i/2 i/2

)
, ρC =

(
1/2 0
0 1/2

)
, ρD =

(
1/2 1/2
1/2 1/2

)
.

(a) Which operators are admissible density matrices?

(b) Which ones describe mixed states?

(c) Which ones describe pure states? In case there is any pure state, write it as a linear superposition
of |1〉 and |2〉.
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Problem 4:

(a. 5 points) Let x and y be random variables drawn from the two independent Gaussian distributions

P1(x) =
1√
2πσx

exp

[
−(x− µx)2

2σ2x

]
,

P2(y) =
1√
2πσy

exp

[
−(y − µy)2

2σ2y

]
.

Let z = x+ y. What is its mean 〈z〉 and its variance
√
〈(z − 〈z〉)2〉? Write down the expression for the

probability distribution function P (z). Can you give a proof for the last step?

(b. 5 points). Consider a mixture of two monoatomic ideal gases a and b at temperature T , with ma

and mb being the masses of their atoms, respectively. The Mawell-Boltzmann distribution of the gas
particles’ velocity vectors ~v = (vx, vy, vz) is given by

P (vx, vy, vz) =
1

(2π)3/2v3th
exp

[
− ~v2

2v2th

]
, (0.0.1)

where
vth =

√
kBT/m. (0.0.2)

Here kB is the Boltzmann constant and m is the mass of the atom. Consider now a randomly drawn
pair of atoms, one from from a and the other one from b. Let their relative velocity be ~vrel = ~va−~vb. Find
the probability distribution function P (~vrel). Write down the expression for the probability distribution
function P (Ecoll), where Ecoll is the center-of-mass energy of collision between the two atoms.
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Problem 5:

Consider N free particles confined inside a large cube of volume V , with periodic boundary conditions
on the particles’ wavefuntions. The density of states in 3-dimensional ~k-space is given by

g(~k) =
V

(2π)3
. (0.0.3)

Take the above equation as given (don’t need to prove) and show that if the particles are spin-1/2
fermions (i.e., 2 particles of opposite spins are allowed in each ~k-state), then the Fermi surface has the
radius

kF = (3π2n)1/3, (0.0.4)

where n = N/V . In the non-relativistic case,

ε(k) =
~2k2

2m
, (0.0.5)

where m and ε are the particle mass and energy, respectively. Assume T = 0 and show that in that
case the degeneracy pressure P of the fermions scales as

P ∝ n5/3. (0.0.6)

Find the coefficient of proportionality. Repeat the same for the case of ultra-relativistic fermions, so that
ε(k) = c~k. Show that

P ∝ n4/3 (0.0.7)

and find the coefficient of proportionality.

Problem 6:

(a, 5 points) Derive a partition function Z(β, ω) for a harmonic oscillator of proper frequency ω immersed
in a heat bath of temperature T ; here β = (kBT )

−1 and kB is the Boltzmann constant. Furthermore,
find the mean energy

E = −∂ logZ
∂β

. (0.0.8)

Show that for T � ~ω/kB, E = kBT .

(b, 5 points). The position operator x̂ can be expressed in terms of the ladder (lowering and raising)
operators a and a† as follows:

x̂ =

√
~

2mω
(a+ a†). (0.0.9)

Here m is the mass of the oscillator. Use this relation to show that the mean potential energy

U ≡ 1

2
mω2〈x̂2〉 = 1

2
E. (0.0.10)

Use this to estimate to order-of-magnitude the root-mean-square of the thermally fluctuating horizontal
displacement of a m = 40kg pendulum attached to a 60cm long suspension fiber (these roughly
correspond to the suspended mirrors of advanced LIGO). Assume the pendulum is in thermal equi-
librium at room temperature T = 300K. You will need the following numbers: kB = 1.38 × 10−23J/K,
~ ' 1.05× 10−34kg×m2/s, and the free-fall acceleration on Earth is g = 9.81m /s2.
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Potentially Useful Equations and Definitions

Time-independent Perturbation Theory

E(1)
n = 〈n(0)|V̂ |n(0)〉

|n(1)〉 =
∑
m 6=n

|m(0)〉 〈m(0)|V̂ |n(0)〉
E

(0)
n − E(0)

m

E(2)
n =

∑
m 6=n

| 〈n(0)|V̂ |m(0)〉 |2

E
(0)
n − E(0)

m

Harmonic Oscillator Equations

â† =

√
mω

2~

(
q̂ − i

mω
p̂

)
â =

√
mω

2~

(
q̂ +

i

mω
p̂

)
â |n〉 =

√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

[â, â†] = 1

En = ~ω
(
n+

1

2

)
Spin operators and Commutators

Useful Commutators:

[Ŝx, Ŝy] = i~Ŝz, [Ŝy, Ŝz] = i~Ŝx, [Ŝz, Ŝx] = i~Ŝy

Spin 1/2

Ŝx =
~
2
σ̂x =

~
2

(
0 1
1 0

)
Ŝy =

~
2
σ̂y =

~
2

(
0 −i
i 0

)
Ŝz =

~
2
σ̂z =

~
2

(
1 0
0 −1

)
Spin 1

Ŝx =
~√
2

0 1 0
1 0 1
0 1 0


Ŝy =

~√
2

0 −i 0
i 0 −i
0 i 0


Ŝz = ~

1 0 0
0 0 0
0 0 −1
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Partition Function
Z(β) =

∑
n

e−βEn

Useful Misc. Identities

Taylor Expansions:

eαx =
∞∑
n

(αx)n

n!
= 1 + αx+

(αx)2

2!
+

(αx)3

3!
+ . . .

√
1 + x ≈ 1 +

x

2
− x2

8
+
x3

16
+ . . .

Commutators:

[A,BC] = [A,B]C +B[A,C]

Trigonometry:

sin(a+ b) = sin(a)cos(b) + cos(a)sin(b)

cos(a+ b) = cos(a)cos(b)− sin(a)sin(b)

Integrals: ∫
dxeiaxx =

1

a2
eiax(1− iax)∫

dxeiaxx2 =
1

a3
eiax(−ia2x2 + 2ax+ 2i)
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