Columbia University

Department of Physics
QUALIFYING EXAMINATION

Monday, January 13, 2020
10:00AM to 12:00PM
Classical Physics
Section 1. Classical Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 83” x 11” paper (double-sided) you
have prepared on.Classical Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. A vertical circular wire loop with its center at the origin rotates about the z-axis with
a constant angular velocity w. A bead can move freely without friction along the loop.

a) At what positions can the bead remain at a constant angle along the loop? The
answers depend on the value of w; you must give the answers for all cases.

b) Which of these positions are stable equilibria and which are unstable one?

\sa
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2. Consider a train car of mass M; able to move without friction in one dimension to which
is mounted a pendulum composed of point mass M, suspended by a massless rod of
length £. A drum of mass Ms is placed on the car for part (b). The drum is symmetric
about an axis directed out of the plane of the diagram, has moment of inertia I about
this axis and radius R. It is free to roll without slipping on the top surface of the car.
Solve both parts (a) and (b) in the approximation that the motion of the pendulum is
in the small angle approximation.

(a) With only the car and pendulum present describe in words the two independent
modes of the system. What is the frequency of oscillation if the system starts with
the car and pendulum at rest but the pendulum makes a non-zero angle 6, with
the vertical direction.

(b) Now include the rolling drum in the system and describe in words the three inde-
pendent modes of the system. What is the frequency of oscillation if the system
starts with the car, drum and pendulum at rest but the pendulum makes a non-zero
angle 8y with the vertical direction.
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3. A ball is bouncing vertically and perfectly elastically in a standing elevator. The max- L—
imum height of the bouncing ball is hy. The upward acceleration of the elevator then
changes very slowly from 0 to g/8. Using adiabatic invariants, find the new maximum
height of the bouncing ball. '
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4. There is a toy called a celt or rattleback (see figure for a representation of the spinning

rattleback) which has the strange property that when placed on a table (with friction)
and spun in one specific direction it slows down, then rattles and starts to spin in the
opposite direction. When confronted with this behavior you might be tempted to say
that it appears as if the law of conservation of angular momentum is violated. The full
analysis of this motion is complex, however it can at least be shown simply that the
vertical component of the angular momentum is not conserved under a special condition
for r, which is the vector from the center of mass to the point of contact with the table.
What is that condition? Use the following notation:

voum is the velocity of the center of mass;
r is the vector from the center of mass to the point of contact;

F is the net force exerted by the table on the rattleback at the point of contact of the
rattleback with the table;

L is the angular momentum of the rattleback;

M is the mass of the rattleback;

Yy is a unit vector in the upward vertical direction.

You may also find the following vector identity useful: A - (BxC)=(AxB)-C
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5. Consider the three following Lagrangians:

1. L =eM2j?
2. L = 2%

3. L=2tan! (£) - L11n (2% + w?2?)
(a) For one of the Lagrangians write out the equation of motion for the corresponding
system. For a second, different Lagrangian, obtain the Hamiltonian and write out

the Hamiltonian equations of motion.

(b) For one of the Lagrangians analyzed in part a, provide the general solution to the
Lagrange or Hamiltonian equation of motion for ¢ > 0 in terms of relevant initial
conditions at ¢t = 0. Clearly indicate the initial values that you have assumed.

(c) For the third Lagrangian not analyzed in part a, identify as many conserved quan-
tities for the physical system as you can find and indicate what continuous trans-
formations of position and/or time the conserved quantities can be associated with.
Ideally, show how the transformation affects the Lagrangian and how the conserved
quantity follows from the form of the transformation.
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Section 1 - Problem 1
Weinberg

A vertical circular wire loop with its center at the origin rotates about the z-axis with a
constant angular velocity w. A bead can move freely without friction along the loop.

a) At what positions can the bead remain at a constant angle along the loop? The answers
depend on the value of w; you must give the answers for all cases.

b) Which of these positions are stable equilibria and which are unstable one?
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Section 1 - Problem 2
Christ

November 25, 2019
N. Christ

Classical Mechanics problem:

1. Consider a train car of mass M; able to
move without friction in one dimension to
which is mounted a pendulum composed
of point mass M, suspended by a massless
rod of length £. A drum of mass M3 is
placed on the car for part (b). The drum is symmetric about an axis directed out of the plane
of the diagram, has moment of inertia I about this axis and radius R. It is free to roll without
slipping on the top surface of the car. Solve both parts (a) and (b) in the approximation that
the motion of the pendulum is in the small angle approximation.

(a) With only the car and pendulum present describe in words the two independent modes
of the system. What is the frequency of oscillation if the system starts with the car and
pendulum at rest but the pendulum makes a non-zero angle 8y with the vertical direction.

(b) Now include the rolling drum in the system and describe in words the three independent
modes of the system. What is the frequency of oscillation if the system starts with the
car, drum and pendulum at rest but the pendulum makes a non-zero angle 8y with the
vertical direction.

Solution:

P 1. (a) Describe the state of the system by two coordinates: 6 the angle that the pendulum makes

A with vertical direction and z the location of the train car. One mode is simple translation
with z(t) = zo + vot and § = 0. The second is oscillation with the location of the CM
fixed. The frequency can be found by solving Newton’s equations for the motion of the
pendulum and the car:

M3 = Mg My(£6 + %) = —Mogh

Eliminating Z from the second equation one finds:

i M,
Myt = —M(1+ Xl—l)ﬁ

giving an oscillation frequency w = /(1 + %)

(b) Two modes are simple to describe: i) Simple translation of the entire system at constant
velocity with § = 0 and ii) The drum rolls at constant velocity while the car and pendulum
are at rest and 6 = 0. The third, oscillatory mode can be obtained from the four equations
for the acceleration of each of the three masses and the angular acceleration of the drum.
Introducing the force F' that the car exerts on the drum and the angle ¢ through which
the drum has rotated, we can write

Mz = Mygf — F My(06 + i) = —Magb
M3(Rp+i)=F I¢=-FR (1)
Eliminating F, é and % from these equations leaves

Mzé = —-Mzg (1 -—-—ﬂ————)

T v
M + T

which implies the frequency w = , [ 4 (1+—Mzﬂ—).
P €q Y J! M1+m%m




Section 1 - Problem 3
Rosen

2020 Quals Problem: Classical Mechanics

A ball is bouncing vertically and perfectly elastically in a standing elevator. The maximum
height of the bouncing ball is hg. The upward acceleration of the elevator then changes
very slowly from 0 to g/8. Using adiabatic invariants, find the new maximum height of the
bouncing ball.



Classical Hecliauics @ oeo\o How Section 1 - Problem 3
Rosen

Ew& S i B, ¢ &‘?’/'ZM -1»\)4&‘3

8’ = a_-\q effective armi\cd‘mw\ﬂ aecelesotion
t'omd_uaﬁov\ of  etlewedor
l\&‘\ﬁ‘a&""\c_ ‘\u‘uw\ou\‘\f Q—;%?dl = ZSP&S
FETwah e wlyay

(%
:}:. AV S}Q\SSZS,(V-GB ~ M&g,‘ \A'-Vz




Section 1 - Problem 4

Tuts

Quals Question — Mechanics
Mike Tuts, 12/8/19

Question:

There is a toy called a celt or rattleback (see figure for
a representation of the spinning rattleback) which has
the strange property that when placed on a table
(with friction) and spun in one specific direction it
slows down, then ‘rattles’ and starts to spin in

the opposite direction. When confronted with this
behavior you might be tempted to say that it appears
as if the law of conservation of angular momentum is
violated. The full analysis of this motion is complex,
however it can at least be shown simply that the
vertical component of the angular momentum is not
conserved under a special condition for 7, which is the
vector from the center of mass to the point of contact
with the table. What is that condition? Use the following notation:

Ucy is the velocity of the center of mass;

7 is the vector from the center of mass to the point of contact;

F is the net force exerted by the table on the rattleback at the point of contact of the rattleback with the
table;

L is the angular momentum of the rattleback;
M is the mass of the rattleback;

¥ is a unit vector in the upward vertical direction.

You might also find the following vector identity useful 4 - (B x E) =(AxB)-C.



Section 1 - Problem 4

Tuts

Solution:

The following basic equations pertain to the motion:

dicy
F—-Mgy=M
gy at
So,
= dﬁCM
F=M Y
= +99)
And from the torque about the center of mass
dL =#xF
at |

Substituting in for F

dL | dicy | L AUy | L
E_TXM< o +gy>—M(rx T +grxy

Now find the vertical component of the angular momentum, which we want to show is not conserved

d A—-b - = di”c - = = - dv = - =
EE(y-L)=My-<rx dt"+grxy)=My-(rx di")+My-(grxy)

-

The second term vanishes since the vectors are perpendicular to each other, and the first term can be
rewritten using the given vector identity

d o _dﬁCM
d—t(y Ly= M@x 7) =

This then tells us the condition we need for the vertical component of the angular momentum to not be
conserved, namely when

Px 7 #0
In other words when 7 does not lie along the vertical direction.

If you want more detail on this complicated motion (e.g. why does the rattleback change rotation when
spun in one direction and not the other, i.e. exhibit chirality? It is not evident from what we showed
above), see the full analysis by Bondi in Proc. R. Soc. Lond. A 405, 265-274 (1986).




Section 1 - Problem 5
Cole

Consider the three following Lagrangians:

1.
2.
3.

L=e"2i?

L = 222"

L=Ztan! (&) - 1ln(2* +w’2?)
For one of the Lagrangians write out the equation of motion for the corresponding system.
For a second, different Lagrangian, obtain the Hamiltonian and write out the Hamiltonian
equations of motion.

For one of the Lagrangians analyzed in part a, provide the general solution to the Lagrange
or Hamiltonian equation of motion for ¢ > 0 in terms of relevant initial conditions at ¢t = 0.
Clearly indicate the initial values that you have assumed.

For the third Lagrangian not analyzed in part a, identify as many conserved quantities for
the physical system as you can find and indicate what continuous transformations of
position and/or time the conserved quantities can be associated with. Ideally, show how the
transformation affects the Lagrangian and how the conserved quantity follows from the form
of the transformation.



Section 1 - Problem 5
Cole

a. The Lagrange equations of motion and general solutions for the three different Lagrangians
are:
s A 52
1. L=e*2%

% (mz) =0— med (A + 1) =0 = & = -\

The velocity, Z has general solution & = Ce™*! and the displacement has general solution,

=04+ Ge™.
2. L= %dsze”“
d . 27z -2 _2vx 2vz (- -2 -2 - 22
E(mxe ) — ymz“e ™ =0 — me (x+2’yz e ) =02 =—7z

The velocity satisfies

1/z = t—z= .
JE=C+1t—% Ci

Then, the position satisfies

1 1 ,
m—/dtC+’yt—;ln(C+7t)+C'

3. L=Ztan7! (&) - JIn (% + w?z?)

oL _ 1. (&\, & (; & - &
0t  wzx wzT w2z? w2z? 12 + w?z?

| SO # w?z? &
=—tan " | — |+ ——| S | — =
wzT wzT w2z \w2z2+ 1 12 + wiz?

oL —i,zta.n‘l(i)_ 1 & & wz
1+ (Z/wz)? wrwz? 52 + w2g2

4
= ___2tan—1 (i) —— l
wx wzx z
Tke equation of motion is therefore
P .
A VAT Wt wri-wi? g j

wzx wz 22 + w2 + a b 1
WT T+ wx? 242 wz2tan wz) T7=0

z

This simplifies to

TZ — 32
N
. Prorz T1=0= i4+2 -9
ch has genera] solution of either form: |

>

T =
Ccos (wt— @), or z = Acos (wt) + Bsin (wt).

\
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Section 1 - Problem 5
Cole

b. The Hamiltonian, H(z,p) can be obtained using the Legendre transformation,
H = pz — L. Evaluating the Hamiltonian and the corresponding equations of motion for the
three Lagrangians

1. L = ¢ 24? The generalized momentum is

p= B—L =Mtmi—i=Le N,
0z m
Then,
i E_ze—At _ M ox [ﬁe—,\t]z _ Eie—m <1 _ l) _ P =3

m 2 m m

The Hamiltonian equations of motion are, then,

__8H__£_,\t
x_ap_me ’ )
. 0H

Then, since p is a constant, the general solution can be written,

P _x
=C— —e™ .
x mA

2. L = Zi%*" The generalized momentum is

oL . ! =
p=——=mie?”® > = L i
m

0t
SO

B 2 m

P2 6_273; _ Te?yz [£€—27I]2 " Eze_z'yz (1 L= l) = ie——Z'yz.
m

Then, the Hamiltonian equations of motion are:

6H _ 26_213 (3)
F=——=
op m A



Columbia University
Department of Physics
QUALIFYING EXAMINATION

Monday, January 13, 2020
2:00PM to 4:00PM
Classical Physics
Section 2. Electricity, Magnetism & Electrodynamics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 2 (Electricity etc.), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 8%” x 117 paper (double-sided) you
have prepared on Classical Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. A plane wave is normally incident on a perfectly reflecting mirror. A glass photographic
plate is placed on the mirror and forms a small angle o to the mirror. The photographic
emulsion is nearly transparent. But when later developed, a striped pattern is found
due to the action of the wave. Predict the spacing of the stripes. Ignore reflections or
attenuation due to the photographic plate.
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2. Consider a spherical capacitor with a fixed radius a for the outer spherical shell and
vacuum between the shells. If the electric field at the surface of the inner spherical
shell cannot exceed a value Ej, for what radius b of the inner shell is the stored energy
maximized, and how much energy can be stored?
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3. Imagine that an ideal magnetic dipole m is located at the origin of an inertial system
S’ that moves with speed v in the z direction with respect to inertial system S. In S,
the vector potential can be expressed as

_ Mo M X '
o P

and the scalar potential is zero. Find the scalar potential V in S (make certain all
elements of the answer are expressed for an observer in S).
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4. A spherical shell with radius R and uniform surface charge density o spins with angular
frequency w around a diameter. Find the magnetic field at its center.
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5. Consider a magnetic field B with energy density Ug = 1076 m.c?/r2 where m, is electron WV
mass and 7, is the classical electron radius. An electron is injected with velocity vo L B;
Vo << c. How many circular orbits will it make around B before its kinetic energy
Ey = mev3/2 is reduced to E; = 1072 Ey?

Section 2 Page 6 of 6
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Section 2 - Problem 2
. Humensky
E&M problem 1

Sunday, November 24, 2018 10:38 PM

Consider a spherical capacitor with a fixed radius a for the outer spherical shell and vacuum between the shells. If the
electric field at the surface of the inner spherical shell cannot exceed a value Eo, for what radius b is the stored energy

maximized, and how much energy can be stored?
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Section 2 - Problem 3
Brooijmans

1 E&M Problem

Imagine an ideal magnetic dipole 7 is located at the origin of an inertial system S’ that moves with speed L

v in the z direction with respect to inertial system S. In S’, the vector potential can be expressed as

- T X1
A=47'r =32 ° (2)
T

and the scalar potential is zero. Find the scalar potential V in S (make certain all elements of the answer
are expressed for an observer in §).

1.1 Solution
Start by applying the Lorentz transformation V = ~(V’ + zA.), realizing that V' = 0. So

pomyz—myy -
V:—yvaﬂyg_rls—z. (2)

‘We do still need to transform 7’ which is
rl2_ 2(R2_F_2R2 . 20 3
=7 02 sin )a ( )

with R the vector, in S, from the (instantaneous) location of the dipole to the point of observation and 8
the angle between R and . And we have ‘

— o myR: —m.R,

or
T (AxR)(1-3%)
Vi 4T R3(1 - g—sinz 6)3/2”’ (5) v




Section 2 - Problem 4

E&M problem 2 Humensky

Sunday, November 24, 2019 10:38 PM

A spherical shell with radius R and uniform surface charge density o spins with angular frequency
o around a diameter. Find the magnetic field at its center.
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Section 2 - Problem 5
Beloborodov

Problem (E&M)

Consider magnetic field B with energy density Up = 1076 m.c?/r3 where m, is electron mass and
re is the classical electron radius. An electron is injected with velocity vo L B; vp < ¢. How many
rotations will it make around B before its kinetic energy Eg = mev2/2 is reduced to Ey = 1072Ey?

Solution
The electron with velocity v | B experiences acceleration due to Lorentz force

—ev X B
MeC

a=

It rotates around B with Larmor radius r found from a = v?/r. The rotation period is

p_ 2 _ 2 _, mec
v a eB

The acceleration a gives the second time derivative of the dipole moment |d| = ea, and the electron
loses energy due to the dipole radiation with rate

dE  2d%*  2e%?B?  4e'B? Ey  4e*B%

E-CE T me - e O B@)  3m3c

The energy is reduced to E; after time

. 3mf§’c5 _E_o
1™ %2B2 " By

Using Up = B?/87 and r, = €?/mec? one finds the number of Larmor rotations

N=t_1=3mgc4 By _ 3 In(Eo/En) _ 83100 . .
1= P 8B B BnR(r3Us/med 105G




Columbia University
Department of Physics
QUALIFYING EXAMINATION

Wednesday, January 15, 2020
10:00AM to 12:00PM
Modern Physics
Section 3. Quantum Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 1 (Classical Mechanics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 8%” x 11” paper (double-sided) you
have prepared on Classical Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!

Section 3 Page 1 of 6



1. Consider the two-dimensional simple harmonic oscillator with Hamiltonian

9 2
_Pp P Lo e
Ho= 5>+ g T 5k(@ + ).

(a) Write down the general equation for the energy eigenvalues of this Hamiltonian.

(b) Write down the energy eigenvalues for the ground state and the first excited state.
What are the degeneracies of these states, if any?

(c) Write down the energy eigenfunctions for the ground state and the first excited
state.

A perturbation is added to the above Hamiltonian of the form H' = bzy, where b << 1.

(d) Find the energy eigenvalues of the perturbed Hamiltonian Hy + H' for the ground
and the first two excited states.

(e) Sketch the energy level diagram for the ground and first two excited states of the
perturbed Hamiltonian. »
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. Consider a particle constrained to move in two dimensions (zy-plane) on a circular ring.
The only variable of the system is the azimuthal coordinate angle ¢. The state of the
system is described by a wave function ¥(¢), which must satisfy the symmetry

(¢ +2m) = V().

The wave function must also be normalized, i.e.,
2
| w@pas=1.
0

Suppose initially that there is no potential applied to the particle. The Hamiltonian for
the system thus consists only of the kinetic energy of the particle, which can be written

L2
Hy= =2
0 2K’
where the operator L, = —ih% and K is a constant.

(a) Calculate the eigenvalues and normalized eigenfunctions of the Hamiltonian Hy.
Which of the energy levels are degenerate?

Now suppose that the particle also experiences a potential, which can be treated as a
small perturbation to the overall Hamiltonian:

H' = —Xcos(29),

where ) is a constant.

(b) Considering the perturbed Hamiltonian, calculate the lowest non-vanishing correc-
tion to the ground state energy due to H'. The following integral may be useful:

1 2
(5m,n o 6m,—n) )

N —

e ™ cos(m¢) dp =
27 0

where §; ; is the Kronecker d-function.

(c) Calculate the ground state wave function to first order in A

Section 3 Page 3 of 6



3. Consider a hydrogen atom. The spin-orbit interaction is written as
Hg = A8+ L
where S is the spin of the electron, L is the orbital angular momentum and A =
& /2mcrS.
(a) Describe in words the origin of the spin-orbit interaction.

(b) Construct the basis of wavefunctions/eigenstates that diagonalizes H,.

(c) Obtain the spin-orbit interaction energies for hydrogen in the state with radial
quantum number n = 2. You may express your results in terms of the matrix
elements of A without explicitly evaluating those matrix elements.
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4. A 2 x 2 matrix is parameterized as p = %(A 1+ o - B), where 1 is the identity matrix,
A is a real number, B is 3-dimensional vector of real numbers, and o represents the 3
Pauli spin matrices:

(01 (0 = _ (10
01 =0z = l O ) 02-0y— 74 0 ) g3 =0z = 0 __1

(a) Find the conditions on A and B if this matrix is a valid density matrix for a pure
" state. You may find this identity (written using Einstein summation convention)
useful:

O’,’O’j = 5ij]]- + ’iﬁijkdk.

(b) Assuming the 2-state system is spin-1/2, and the matrix is in the z-representation,
" find the values of A and B that maximize the expectation value of (S,), the y-
component of the spin operator.

(c) What conditions on A are B are needed to represent the density matrix for a mixed
state?
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5. Consider a particle of mass m moving in the three-dimensional potential
V(T> 9, ¢) = %6(T - a),

where V; is a constant. Suppose the angular momentum £ = 0. Then the Schrodinger
equation for the radial wavefunction is

? 2d 2
<—cﬁ_2+;$+h—T(E_%5(r_a))) R(r) =:(),

In terms of k = 1/2—’;';‘2, give

(a) the solution to the Schrodinger equation when 0 < 7 < a,

(b) the solution to the Schrédinger equation when r > a.

(c) Give the matching condition for parts (a) and (b) at r = a.

(d) If one writes R(r) = h{? (kr) + €2*h{" (kr) for 7 > a, can you evaluate €?*? What

is 6 when V; is very large? (Note the difference between the Dirac delta function
and the phase shift, §.)

The solutions to the differential equation

2 2d 2+1) _
(@4‘;&;-{—1— o )f(z)—O,

are the spherical Bessel functions j,(z) and n,(z), or equivalently, the spherical Hankel
functions hgl)(z) and hf)(z). For £ = 0, we have

) s ) __cos(®) € e
Jo(2) = s n0(2) =y hg'(2) = o hy'(2) = — =

Section 3 Page 6 of 6
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Section 3 - Problem 2

Hill
Quantum Mechanics

Particle on a Ring

Consider a particle constrained to move in two dimensions (zy-plane) on a circular ring. The only variable of
the system is the azimuthal coordinate angle ¢. The state of the system is described by a wave function ¥(¢), which
must satisfy the symmetry

V(¢ +27) = ¥(g). (1)

The wave function must also be normalized, i.e.,

27
| m@rae=. @)
Suppose initially that there is no potential applied to the particle. The Hamiltonian for the system thus consists

only of the kinetic energy of the particle, which can be written

L

Ho= 2%

3
where the operator L, = —iﬁ% and K is a constant.

(a) Calculate the eigenvalues and normalized eigenfunctions of the Hamiltonian Hy. Which of the energy levels
are degenerate?

Now suppose that the particle also experiences a potential, which can be treated as a small perturbation to the
overall Hamiltonian:

H' = —Xcos(2¢), 4)
where ) is a constant.

(b) Considering the perturbed Hamiltonian, calculate the lowest non-vanishing correction to the ground state
energy due to H'. The following integral may be useful:
27 ) 1
oy g cos(me) dp = = (6mn + Om,—n) , (5)
T Jo 2

where 4; ; is the Kronecker §-function.

(c) Calculate the ground state wave function to first order in .

4
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Section 3 - Problem 3
Pinczuk

General-Section 4: Applied Quantum Mechanics
Consider a hydrogen atom. The spin-orbit interaction is written as:
Hso =AS L (1)

In Equation (12 S is the spin of the electron, L is the orbital angular momentum,
and A=(e2/2m c2r3).

(a) Describe in words the origin of the spin-orbit interaction.
(b) Construct the basis of wave functions that diagonalize Hg,.

(c) Obtain the spin-orbit interaction energies for hydrogen in the state with radial
quantum number n=2.



Section 3 -3
Pinczuk

Quals2020-AQM-Pinczuk: Solution

(a) In the rest frame of the electron the proton is moving with velocity —v, that
produces a magnetic field B ~ L. The coupling of this field to the intrinsic

magnetic moment from S is the spin-orbit interaction Hgo.

(b) Rewrite the spin-orbit interaction Hs, = AS L as

H, = (A2) *-L*-§%) (1)
where J is the total angular momentum. The states with quantum numbers J, L,
and S make this Hamiltonian diagonal. The states can be written as: |j, m, 1, s>,

where m are the components of j.

In this basis the matrix elements of Hg, are:

<Hy>=<A@>u 7 {j(+1) -1(1+1) - %} (2)

(c) For n=2 the allowed values of | are 0 or 1. The allowed values of j are | ¥ %.
The value j = %2 is obtained from 1 = 0,1. There are two terms.

The value j = [ is obtained from 1 = 1 only (one term here).
There are also two matrix elements:

<A(M)>20=A0 (3)

and

<A1 =A1  (4)

The spin-orbit interaction energies are obtained with Egs. (2) (4).



Section 3 - Problem 4
Zajc
W.A. Zajc

1 Problem: (Bloch Sphere) Density Matrix

A 2 x 2 matrix is parameterized as 5 = 1(4 1 + & - B), where 1 is the identity matrix, A is a real number, 5 is
3-dimensional vector of real numbers, and & represents the 3 Pauli spin matrices:

0'—0'_01 0'_0""0_1: 0'_0'—10
]—:—1072—y—i0 a3—z‘—0_1

a) Find the conditions on A and B if this matrix is a valid density matrix for a pure state.
You may find this identity (written using Einstein summation convention) useful: 005 = 0351 + i€k 0k.

b) Assuming the 2-state system is spin-1/2, and the matrix is in the z-representation, find the values of 4 and
B that maximize the expectation value of (S‘,,), the y-component of the spin operator.

c) What conditions on A are B are needed to represent the density matrix for a mixed state?



™ 2 Solution: (Bloch Sphere) Density Matrix

Section 3 - Problem 4

Zajc

a) A valid density matrix requires Tr[p] = 1 = A = 1 (since Pauli matrices are traceless). For a pure state, it
must also satisfy p? = p so

[1+2&'-J§+(5-§)2]

| =

| =
N =

2
p=-(1+&-B) = ,52=B(A1+Er'-§)] =

Using
(5" 2 §)2 = (UiBi)(O’ij) = 5,;jBiBj]|. + iE,‘jkBiBjO’k = .é . El + Z(E X g) -0 = .E 3 El ’

we get

~2

P# = -%[1+25-§+(1§-1§)1] , (1)

N =

which requires B - B = 1o satisfy 5* = j

b) (S,) =Te[s 8] = iTx[(1 + 0 - B)%oy) = § $Tx[(02 B + 0y By + 0:B:)0y],
but o0, = ic., which is traceless, similarly for 0.0y, while oyoy =1,
so B = (0, 1,0) maximizes ($,) to &, which makes physical sense.

c) For a mixed state, we must still have Tr[5] = 1, so we still require A = 1 (of course). But a mixed state is
signified by Tr[3%] < Tr[5]; using results from part a) we see that the necessary condition is |B|? < 1.

Those seeking more information should look at the Wikipedia article on the Bloch sphere.
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Columbia University
Department of Physics
QUALIFYING EXAMINATION

Wednesday, January 15, 2020
2:00PM to 4:00PM
Modern Physics
Section 4. Relativity and Applied Quantum Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 4 (Relativity and Applied Quantum Me-
chanics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 8%” x 11” paper (double-sided) you
have prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. The deuteron is a bound state of a neutron and a proton. The deuteron ground state
binding energy is Eg = —2.22 MeV. Model the proton-neutron potential as a square
well of unknown depth V; and range a = 2.0 fm, and assume that the ground state is an
s-wave. '

(a) Using the fact the the deuteron is a very weakly bound state, make a rough estimate
for V,. You may take the neutron and proton masses to be equal with Mc* =
940 MeV. You may find it useful to use Aic = 197.3 MeV-fm.

(b) Improve your estimate by taking into account the boundary conditions for the
radial wave-function at r = a to find an approximate solution to the resulting
transcendental equation, keeping in mind that the deuteron is loosely bound.

Section 4 Page 2 of 6



2. A laser beam has photon number density n. Find the photon density n' in a frame
moving along the beam with velocity v.
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3. Consider the following simplified model of neutrino oscillation, involving only a two-level
system:

We begin by assuming that there are two unique neutrino mass states, represented by
|v1) and |vp), each with mass m; and ma, respectively, and that each is an eigenstate
of the Hamiltonian in the two-dimensional Hilbert Space spanned by these two basis
vectors, i.e.: A

H|v) = E |n),

H|vo) = E; |va),
and <l/¢|l/j> = (5,-3-.

We also assume that when neutrinos are produced in a weak interaction they are always
produced as so-called “flavor eigenstates,” defined in terms of the mass states as follows:

|ve) = cos |v1) +sinf |vs),
referred to as an electron neutrino, and
|vy) = —sinf |1n) + cos b |1s) ,

referred to as a muon neutrino.

Given a neutrino is produced at time ¢t = 0 as a pure muon neutrino eigenstate, calculate
the probability that, after some time ¢ > 0 measured in the lab frame, this neutrino would
be detectable (through a weak interaction) as an electron neutrino.

When is this probability maximal?
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4. A particle of charge g and rest mass my is accelerated from rest by a uniform electric
field E = ‘—2‘15{, which is generated by applying a potential difference V; between two
parallel metal plates separated by a distance L.

(a) What is the kinetic energy of the particle when it reaches the second plate? Recall
that dE =F - dr.

(b) What is the particle’s Lorentz factor ~?

Suppose that the particle passes through a hole in the second plate into a region where
the electric field E = 0, but there is a uniform magnetic field B = Byz. The particle is
observed to move in a circular arc of radius 7.

(c) Derive an expression for 7 in terms of By, Vp, ¢, and the mass-to-charge ratio mg/q.

(d) Compute E and B in the rest frame of the particle immediately after it emerges
from the hole, expressed in terms of By and the dimensionless velocity 3.
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5. A stream of protons traveling at velocity v = 0.9900c are directed into a two slit ex-
periment where the slit separation is d = 4.00 x 10~°m. An interference pattern results
on the viewing screen. What is the angle between the center of the pattern and the
second minimum? You can assume the distance between the screen with the slits and
the viewing screen is much larger than any other relevant distance.

Section 4 Page 6 of 6
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Section 4 - Problem 1
~ W.A. Zajc Zajc

1 Problem: Deuteron Binding Energy

The deuteron is a bound state of a neutron and a proton. The deuteron ground state binding energy is
Eg = —2.22 MeV. Model the proton-neutron potential as a square well of unknown depth V; and range
a = 2.0 fm, and assume that the ground state is an s-wave.

a) Using the fact the the deuteron is a very weakly bound state, make a rough estimate for V. You may take the
neutron and proton masses to be equal with M ¢ = 940 MeV. You may find it useful to use hc = 197.3 MeV-fm.

b) Improve your estimate by taking into account the boundary conditions for the radial wave-function at r = a
to find an approximate solution to the resulting transcendental equation, keeping in mind that the deuteron is

loosely bound.



Section 4 - Problem 1
2 Solution: Deuteron Binding Energy Zajc

a) For s-wave states, and a two-body system with reduced mass p, the Schrodinger equation becomes

2

" R* 1
~g55 yORre)+V(ryy = By

which implies u(r) = ry(r) satisfies a simple 1d Schrodinger equation. The boundary condition at » = 0
requires u(r) ~ sin kor for r < a, with k% = %—‘; (Vo + E). (In this expression the well-depth is —V}, that is, V} is
a positive number while E is negative for a bound state.)

If the state is very weakly bound, the wave function barely "turns over” at r = a, that is, koa =~ %, which implies

Vo z% (;—a)z—E=27.8MeV

b) To refine this estimate, we must take into account the wave function for r > a, which goes as e~9" with
¢*> = —% E. Matching u(r and »'(r) at = a leads to

tan kgpa = ——kﬂ
q

2

which is the transcendental expression mentioned in the statement of the problem.
To obtain an approximate solution, use the fact that koa is only slightly greater than % (again, the "loosely
bound” condition) to express koa = % + 4 to rewrite the above equation as

cotd = ﬁ
q

We expect § < 1, leading to the approximate solution § ~ fg o)

Bt B sl
kotz-—2+5 2+k0 3
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: Zajc
ﬁ We take the + solution since that gives us % + a small correction. Numerically, this results in ko = %2-, which
then gives
2 2
el (1—83> _E=367MeV ,
24 a

very close to the value of 36.5 MeV obtained by exact (numerical) solution to the transcendental equation.
This differs significantly from the 0-th order estimate because the  ~ 1.57 — 1.82 enters as the square in the
expression for the potential depth, even though the wave-function does indeed "barely turn over”, as shown in
the below figure:

|
&
H

-2.2231 MeV = E,
s
@
£
s
-25}
[} 2 4 6 8 10
r (fm)
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Beloborodov

 Problem (Relativity)
A laser beam has photon number density n. Find the photon density n’ in a frame moving along the
beam with velocity v.

Solution using 4-flux
Choose the z-axis along the beam. The four-flux of photon number is F¥ = cn(1,1,0,0). The
corresponding flux in the moving frame F¥' = ¢n’(1,1,0,0) is related to F* by Lorentz transformation:

FOY=qF° —yBFl=q(1-B)en = n' =4(1-5)n,

where 8 = v/c and v = (1 — £2)~1/2.

Solution using worldlines

Let S be the beam cross section. Consider a piece of the beam of length | = 4 — zg. It contains
N = nlS photons. As the beam propagates with the speed of light ¢, the boundaries of the piece, T4
and zp, also move with ¢. Their worldlines in the (ct, z) plane satisfy

Ty =cly, zgp=ctg —1, (1)

(the reference time ¢ = 0 was chosen when z4 = 0). When the same piece is viewed in the moving
frame, its cross section is A’ = A (the Lorentz boost along z does not touch y,z), and its length is
changed to I’. Then

n/
nl!A' =nlA=N =inv = —=

|~

It remains to find I’. For a pair of events (ct4,z4) and (ctp, zp), Lorentz transformation of the 4-vector
connecting the events gives

c(ta —tp) = ve(ty — tg) + vB(zs — =) (2)
x4 —zB =(z)y — z) + 1Be(ty — tp) 3)

The meaning of length !’ is I = z/y — 25 at t/; = t}5, so Eqgs. (2) and (3) give

c(ta—tp) =BV
zp—zp =7l

Using (4 — z8) — c(ta — tg) = (see Eq. 1), one finds

yU—ypl=1 = n'=7y1-f)n

V

W



Section 4 - Problem 3
Karagiorgi

QM Problem: Neutrino Oscillation

Georgia Karagiorgi

Consider the following simplified model of neutrino oscillation, involving only a
two-level system:

We begin by assuming that there are two unique neutrino mass states, rep-
resented by |v1) and |v;), each with mass m; and my, respectively, and that
each is an eigenstate of the Hamiltonian in the two-dimensional Hilbert Space

spanned by these two basis vectors, i.e.:
H|n) = B n),
H sz) = Eg |V2) s

and (Vill’j) = éij-

We also assume that when neutrinos are produced in a weak interaction
they are always produced as so-called “flavor eigenstates,” defined in terms of
the mass states as follows:

[ve) = cos 8 |v1) + sin 6 |us),
referred to as an electron neutrino, and

) = —siné 1) + cos 8 |usy)

referred to as a muon neutrino.
Given a neutrino is produced at ti
me ¢ = 0 as a pure muon neutrino eigen-
state, calculate the probability that, after some time # > 0 measured in theglab

E ]. . 11] 1 ]l ] ] ] . .
I E’ 1€utrino - € etectable ( Ou'g av interac lcn) as an

When is this probability maximal?




Solution:

i Section 4 - Problem 3
Karagiorgi

At t = 0, the initial state is given as |v,) = cosf |v1) — sin6 |v,). After some
time ¢, we know each mass state will evolve according to:

P(t) = e H/Rp(0) = e7E/Ry(0).

Therefore, the time-evolved neutrino state is given by:

[vu(t)) = —sinBe " Brt/% 1)) 4 cos fe B2/ |y) |

The probability that this state will be detectable as an electron neutrino is
represented by the quantum-mechanical overlap of the time-evolved state and
the definite electron neutrino state:

Pyusse

| (velvu(®)) Iv) (@)

|(cos 8 (1] + sin 8 (vo|)(—sin 8 |y ) e *Ext/% 4 cos B |vp) e P E22/R)|2
| — sin 8 cos e E1t/R 1 cos §sin e~ E2t/R |2

sin? 6 cos? fe= Eat/h _ c=iEat/h|2

sin? 0 cos? B(1 + 1 — ¢Bat/he=iEat/h _ o=iEat/h giErt/h)

sin? 8 cos® §(2 — 2 cos(Eat/h — Eqt/h))

—-FE
4sin29<:052l9si112(E2 5 lt)

—E
swmwﬁh%y

The probability oscillates with a frequency of (E; — E1)/(27h), and reaches
its maximum whenever t = (2n + 1)5h/(E2 — Ey).
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Special Relativity
Mass Spectrograph
A particle of charge g and rest mass my is accelerated from rest by a uniform electric field E = -‘{ni, which is
generated by applying a potential difference Vp between two parallel metal plates separated by a distance L.

(a) What is the kinetic energy of the particle when it reaches the second plate? Recall that dE = F - dr.

(b) What is the particle’s Lorentz factor 77

Suppose that the particle passes through a hole in the second plate into a regior. where the electric field E = 0,
but there is a uniform magnetic field B = Byz. The particle is observed to move in a circular arc of radius r.

(c) Derive an expression for 7 in terms of By, Vb, ¢, and the mass-to-charge ratio mg/q.

(d) Compute E and B in the rest frame of the particle immediately after it emerges from the hole, expressed in
terms of By and the dimensionless velocity 3.
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9020 Quals Problem: Quantum Mechanics

A stream of protons traveling at velocity v = 0.9900c are directed into & two shit experiment
where the shit separation is d = 4.00 % 10~°m. An interference pattern results on the viewing
screen. What is the angle between the center of the pattern and the second minimum? You

between the screen with the slits and the viewing screen is much
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Columbia University

Department of Physics
QUALIFYING EXAMINATION

Friday, January 17, 2020
10:00AM to 12:00PM
General Physics
Section 5. Thermodynamics and Statistical Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 6 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 5 (Thermodynamics and Statistical Mechan-
ics), Question 2, etc.).

Do NOT write yoﬁr name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 8%” x 117 paper (double-sided) you
have prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. Consider a gas contained in volume V' at temperature T. The gas is composed of N A "4
distinguishable particles of zero rest mass, so that the energy F and momentum p of the
particle are related by E = pc. The number of single-particle energy states in the range
p to p +dp is 4nVp*dp/h®. Find the equation of state and the internal energy of the
gas, and compare with an ordinary gas.
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9. Consider a mole of helium gas in container of size one liter at room temperature. Assume

the helium is an ideal, noninteracting gas in the classical limit. The single-particle
partition function for an atom is given by Z, = 1% (%—f}g;)s/ N

(a) Please compute the free energy of the gas (use Stirling’s approximation).

(b) Now compute the chemical potential.

(c) Now assume that this container is connected to a large reservoir of helium gas, which
has the same pressure and temperature. The container is free to exchange particles
with the reservoir. Consider an ideal gas of particles of mass M in a volume V in
thermal equilibrium with a reservoir with which it can exchange particles. Please

/ 2
compute the fluctuation in particle number ——W(—%—ﬂ where the brackets indicate
a long time average.
(d) Assuming the number density is the same as in parts (a) and (b), how big should

the container have been so that the fluctuation in particles defined in (c) is 10%?
(Work this out numerically.)
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3. For an elastic filament it is found that, at a finite range in temperature, a displacement
z requires a force (tension)
T=az+bT+cTz

where a, b, and c are constants. Furthermore, the heat capacity C of the filament at
constant displacement is proportional to temperature, i.e.

C, = A(z)T.

(a) Use an appropriate Maxwell relation to calculate the partial derivative of the
entropy, S, with respect to displacement at fixed temperature T, i.e. calculate

(85/0z)y.

(b) Show that the coefficient A in the equation for specific heat, above, has to in fact

be independent of x, i.e.
dA

=
(c) Give the expression for S(T’, z) assuming S(0,0) = S,.

(d) Calculate the heat capacity at constant tension, i.e. Cr as a function of displace-
ment and temperature.
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(a)

(b)

(d)

The Bose Einstein Condensation temperature Tppc is the temperature at which a
macroscopic number of bosons in a gas enter the ground state. At this temperature,
the thermal wave length (or spread of the wave function) of a boson becomes com-
parable to the average distance between adjacent bosons. Use this fact to estimate
Tsgc for an ideal monoatomic, non-relativistic Bose gas system in three dimensions
which has a particle density, n (bosons per volume) and the boson mass, m. It is
not necessary to derive Tpgc rigorously using the partition function and Riemann
zeta function. We will, however, accept such an answer if it is correctly done.

For spin-1/2 fermions in 3 dimensions, one can calculate the Fermi temperature T
from the Fermi energy er = kpTr for non-interacting Fermi gas with density n and
mass of each fermion m. Show that Tepc and Tr has the same dependence on n
and m. This can be done either by using the uncertainty principle or by calculating
¢ for free Fermions in a 3-dimensional box.

When one resorts to a rigorous calculation, Tsec and T are comparable within a
factor of 2. Explain why this is so with qualitative arguments. We are not asking
you to perform a rigorous calculation of these numbers, but rather remember what
Tgec and Tr stand for and explain why they are comparable.

Describe one phenomenon in the real world which can be attributed to the Bose Ein-
stein Condensation, and describe an experimental method to measure the transition
temperature.
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5. A mixed stated in quantum mechanics is described by a density matrix rather than by a v
vector in the Hilbert space. The density matrix, j, is an operator that allows to compute
expectation values of observables through

A

(0) =Tx(50). 1)
The trace ‘TY’ is defined as
Tr(...) =Y (n|---|n), 2)

where the sum is taken over any complete orthonormal set of states {|n)},.
‘Consider then a 1-D harmonic oscillator with proper frequency w, at finite temperature
T =1/B. The corresponding density matrix (setting kg = 1) is

e—bH

=) X

where H is the Hamiltonian. Notice that Tr(p) =1

(a) Compute the average energy:

E=(H). (4)
(b) Compute the so-called von Neumann entropy: v
S=-Tr(plogp) . (5)

(c) For E and S computed above, discuss the low-temperature (T" < E;) and high-
temperature (T >> E;) limits.

(d) For the high-temperature limit of item 3 above, consider changing the temperature
by an infinitesimal amount dT". Verify the thermodynamical identity
dE = TdS . | (6)

[Hint: To compute traces, use the orthonormal basis made up of energy eigenstates. In
this basis, all traces relevant for the problem reduce to geometric series or derivatives
thereof (with respect to B). Also, by using directly the ezpression (3), you can relate the
computation of S in part (b) to that of E in part (a))]
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6. Fermions with peculiar dispersion

One (unproven) theory says that matter in the core of a neutron star can be viewed as
a gas of fermions with the excitation spectrum

5 (k)—i—hz—(k—k )?
where the — pertains to k < kr and the + to k> kr.
Suppose that at T = 0 all of the states with energy less than 0 are filled and all of the
states with energy greater than zero are empty.

(a) What is the chemical potential at T = 0?

(b) Assuming that the density of states in reciprocal space is constant around |k| = kr,
i.e. approximating [ d®k — k% [ dg with ¢ = k—kp and neglecting any temperature
dependence of the chemical potential find the temperature dependence of the mean
energy of the system E(T) — E(T = 0).

(c) Using the same approximations as in (b), find the specific heat and give the leading
temperature dependence as T' — 0.
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Dodd

2028 Quals Question: Thermo /Stat. Mech. {Dodd)
Problem:

Consider a gas contained in volume V at temperature 7, The gas is composed of N distinguishable
particies of 2ero rest mass, so that energy £ and momemumpofﬂxepamclearer&tedbyf pc. The
number of single-particle energy states in the range pto {p + dp}is &Wp’dpﬂr’ Find the equation of
state and tbe internal energy of the gas, and compare with an ordinary gas.

YM o Vg o E sf _%' ,——)‘:ALLLL,
: — k:____ . ‘ LB ; ’:f*-.k\' -
+ = ( o ' é\‘-\:i - 174 i L [k'i‘""”

. L]

N

5\5’—5‘%"\5‘\»&5 5% C-\v‘*rﬁ ’i( Sales é\x:,{_; .

- G \1

‘1

6, e b = )
{ 7. =\
S = = o {( (2]

(¥



Section 5 - Problem 1
Dodd



Section 5 - Problem 2
Millis

2020Quals
A. Millis

January 7, 2020

1. Consider a mole of helium gas in container of size one liter at room temperature.
Assume the helium is an ideal, noninteracting gas in the classical limit. The single-
particle partition function for an atom is given by Z; = V(%g,?)” 2 Please compute
(a) the free energy of the gas in Joules (use Stirling’s approximation)

{b) the chemical potential in eV

(c) Now assume that this container is connected to a large reservoir of helium gas,
which has the same pressure and temperature. The container is free to exchange
particles with the reservoir. consider an ideal gas of particles of mass M in a volume
V in thermal equilibrium with a reservoir with which it can exchange particles. Please

s 2
compute the fluctuation in particle number @ where <> indicates a long
time average. :

(d) How big should the container have been so that the fluctuation in particles defined
in (c) is 10%?

Solution:

(a) The N particle partition function is given by Z = Z1 /N!. The free energy of an
ideal gas is F = —Tln(Z). Plug and chug to get

F(N,V,T) = —NkgT — NkgTin el NA3 (1)

with Ay = \/2kaT Plug in numbers, F' = —4 X 10%Joules.

(b) The chemical potential p = OF/ON = —kBTln‘]i,—“)‘% = 0.3%eV

(c) Ezamination of the formula for the grand canonical partition function shows that
-1

< (N-<N>P>=TZin[0] =T% = (%%ﬁ)

From the result of (a) we evaluate this as

T (%)1 _N @)

1

ST cmmmeeescsssaaas o
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Millis
A4
so the relative number fluctuation is just ﬁ or 7717 From the answer to (c), ﬁ =
0.1 0orV= -1% = 166nm?
. Filament: For an elastic filament it is found that, at a finite range in temperature, a
displacement x requires a force (tension)

T=ax+bT+cTz (3)
where a, b, and ¢ are constants. Furthermore, the heat capacity C of the filament at
constant displacement is proportional to temperature, i.e.

Cz = A(z)T (4)

Please
(a)Use an appropriate Maxwell relation to calculate the partial derivative of the en-
tropy, S, with respect to displacement at fixed temperature T, i.e. calculate 8S/dz|r
(b)Show that the coefficient A in the equation for specific heat, above, has to in fact
be independent of x, i.e.

dA

— =0 5

—~ (%)
(c)Give the expression for S(T,x) assuming S(0,0) = Sp.
(d)Calculate the heat capacity at constant tension, i.e. Cr as a function of displace-
ment and temperature
Solution: (a) If F is the free energy then W

o5 __OF __00F T
0z'T = " 0zdT 0T 6z _ OT

(b) From the relation C = T8S/0T we find A(z) = 8S/0T so OA(z)/dz = 5°S/0Tdx
and taking the derivative with respect to T of the answer in (a) shows the result is 0

(c) Because the cross derivative 82S/0z0T = 0 we have
S(z,T) = Sz(z) + Sr(T) (7)

and integrating the results of the previous problems

=b+cz (6)

S(z,T) = 8(0,0)AT + bz + %c:cz (8)
(d) The change in tension is
dT = (a+ cT)dz + (b+ cz)dT 9)
so if dT =0 then % = —% and
oS oS 0S dz (b+ cz)?
Cr=T4/ =T +T— —=AT-T——=
4 orr 0Tz + Oz TdT AT-T a+cTl 10}
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Tomo Uemura

January 5, 2020

Bosons and Fermions.

(1) The Bose Einstein Condensation temperature TgEc is the temperature at which a
macroscopic number of bosons in a gas enter the ground state. At this temperature,
the thermal wave length (or spread of the wave function) of a boson becomes com-
parable to the average distance between adjacent bosons. Use this fact to estimate
TgEc for an ideal monoatomic, non-relativistic Bose gas system in three dimensions
which has a particle density, n [bosons per volume] and the boson mass, m. It is not
necessary to derive Tpgc rigorously using the partition function and Zeta function.
We will, however, accept such an answer if it is correctly done.

(2) For spin 1/2 fermions in 3 dimensions, one can calculate the Fermi temperature Tr
from the Fermi energy er = kpTr for non-interacting Fermi gas with density n and
mass of each fermion m. Show that Tsgc and Tr has the same dependence on n and
m. This can be done either by using the uncertainty principle or by calculating er
for free Fermions in a 3-dimensional box.

(3) When one resorts to a rigorous calculation, Tggc and Tr are comparable within a
factor of 2. Explain why this is so with qualitative arguments. We are not asking
you to perform a rigorous calculation of these numbers, but rather remember what
Tgec and Tr stand for and explain why they are comparable.

(4) Describe one phenomenon in the real world which can be attributed to the Bose Ein-
stein Condensation, and describe an experimental method to measure the transition
temperature.
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Examples of possible solutions:
(1) Teec Attemperature T, p?/2m~ksT, p = (2mksT)¥?

Let A be the thermal wave length A =h/p.

At BEC, A becomes comparable to interboson distance n'¥/3
Therefore p?=h?x n¥® = 2mkgTeec

This gives Tgec ~ (h?/2ks) [ N3 / m]

c.f. An exact calculation gives Teec = 3.31 (h/27)%/ks x [n%3/m]

(2) Trermi  Suppose you divide the volume V into a small sub-cube of the edge size Ax. In each sub-cube,
we can put two fermions (spin up and down).

2 xV/(Ax)®=N (N being total number of fermions). -

22 (VINJ® = Ax

Ap Ax~ (h/2w) from uncertainty principle.

(Ap)3/2m ™ Erermi ~ (h/27)2 222 21 0?3 /' m

Trermi ~ (h/2m)? 222 2 (1/ks) [n*% / m]

c.f. An exact calculation for Fermi energy for free electron gas in 3 dimension is
Tream = (h/2)? (3722 /2Ke x [n¥3/m]

(3) As you can see in the c.f.s shown above, exact results for Teec and Trermi are comparable within a
factor 2. This can be understood if you remember that both energy scales represent a boundary
between quantum mechanical (boson or fermion) particles and higher energy classical particles. Below
these energy scales, bosons and fermions form quantum degenerate liquid. In the classical gas at higher
temperatures, distinction between bosons and fermions becomes unnecessary.

(4) actual examples of BEC; methods to measure the condensation temperature

(a) Superfluid 4He. Superfluidity can be verified by vanishing viscosity measured by torsion oscillator,
critical opalescence, lambda-shaped peak of the specific heat, and more

(b) Superconductivity. BCS superconductors undergo a special case of BEC at the critical temperature
Tc, where formation of bosons from fermions (pair formation) and condensation of newly formed
bosons occur simultaneously. Critical temperature can be measured as zero resistivity, diamagnetism
due to Meissner effect, specific heat anomaly, and many other phenomena.

(c) BEC of cold atoms: BEC of dilute cold boson gas can be observed from the velocity distribution
peaking at zero momentum of the gas below Tgec.

(d) other possible case includes BEC of neutron star, BEC of excitons in semiconductors, and possible
BEC of pre-formed pairs in underdoped regions of high-Tc cuprate and other unconventional
superconductors. One can refer to literatures on how to measure Tgec in these systems.
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Nicolis

1 Applied Quantum

A mixed stated in quantum mechanics i6 described by a density matrix rather than by a vector in
the Hilbert space. The density matrix, p, is an operator that allows to compute expectation values of
observables through

(0) = Tx(30) . )

The trace ‘“Ir’ is defined as
6] ..o Y= Arilews 1B} 5 (2)

where the sum is taken over any complete orthonormal set of states {|n)}n-
Consider then a 1D harmonic oscillator with proper frequency w, at finite temperature T=1/8. The
carresponding density matrix (setting kg = 1) is

e”ﬁH

p=—, 3
S 3)

where H is the Hamiltonian. Notice that Tr(p) = 1.

1. Compute the average energy: X

E=(H). (4)

2. Compute the so-called von Neumann entropy:
= —Tr(p logp) - (5)

3. For E and S computed above, discuss the low-temperature (T < Ep) and high-temperature (T >
Ep) limits.

4. For the high-temperature limit of item 3 above, consider changing the temperature by an infinites-
imal amount dT'. Verify the thermodynamical identity

dE =TdS . (6)

[Hint: To compute traces, use the orthonormal basis made up of energy eigenstates. In this basis, all
traces relevant for the problem reduce to geometric series or derivatives thereof (with respect to B). Also,
by using directly the ezpression (3), you can relate the computation of S in item 2 to that of E in item
1]

Solution
For the 1D Harmonic oscillator, the energy eigenstates {|n)}n=0,12,... are such that
Hln) = Eo(n+ 3)In) , n=0,12,..., (7
where Eg = Aw is the energy gap between two adjacent states. Since p is a function of H alone, j is also
diagonal in this basis:
pln) = pnln) , ®)

1

s



with eigenvalues

n = e —BEem+1/7)

The sum at the denominator is a geometric series,

i —BEo/2
—BEo/2 —BEq\m _ €
e i =

and so the eigenvalues of p are
pn = (1 — e~FB0) ¢=8B0n

1. We have

B = Tx(pf) = (1 - P5)Eg 3 (e #5m) (n-+

n=0
1 8 Tie
_(1_.BE\m(_ 108 1 —BEp\n
=(1-e )Eo( anﬁ+2);;0(e )
1 0 1
_ B\ 0 1
=3P (=) S

2. Given the definition of the thermal density matrix, eq. (3), we have
S = —Tr(p log p)

= BTx(pH) + Tx(p) log Tr(e#H)
e—PEo/2
=B(E—1Ey) —log (1 - e‘ﬁE°)

e PEo SR
= BBy, —log (1 - e77%) .

3. At low temperatures, we have e #£0 « 1, and so

Section 5 - Problem 5

Nicolis

E=1E(1+0(e?%)), S=0BEe*R)«1.

9)

(10)

(11)

(12)
(13)
(14)

(15)

(16)
(17)

(18)
(19)

(20)

(21)

This makes sense: at very low temperatures compared to the gap, the probability of being in an
excited state is exponentially small. So, up to exponentially small corrections, the system is in the

ground state, with energy Ep/2 and zero entropy.
At high temperatures, we have e #E0 ~ 1 — E;, and so:

1 T
Ex~—-=T, S~-lo =log—>1.
3 g(8Eo) % 5

(22)

The energy is consistent with equipartition, while the entropy is very high, and of the right order
of magnitude: all states up to E ~ T are equally populated; there are N ~ E/Ey ~ T/Eq of them,

and the entropy is S ~ log N.
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4. For an infinitesimal temperature variation dT’, from eq. (22) we get

T

dE ~dT , dSz—:F, (23)

which is consistent with dE = T'dS.
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A. Millis
January 4, 2020

1. Fermions with peculiar dispersion One (unproven) theory says that matter in the core
of a neutron star can be viewed as a gas of fermions with the excitation spectrum

h? 2
ex(k) = %5 (k — kr) 1)
where the — pertains to k < kr and the + to k > kp.

Suppose that at T' = 0 all of the states with energy less than 0 are filled and all of
the states with energy greater than zero are empty.

(a) What is the chemical potential at T' = 07

(b) Assuming that the density of states in reciprocal space is constant around |k| =

kp, i.e. approximating [ d3k — k%, [ dg with ¢ = k — kr and neglecting any temper- &
ature dependence of the chemical potential find the temperature dependence of the

mean energy of the system E(T) — E(T = 0).

(c) Using the same approximations as in (b), find the specific heat and give the
leading temperature dependence as T — 0.

Solution:
(a) The chemical potential =0 ,
(b) The internal energy is (making the indicated approzimation and noting that e =

—E+) (k) kz 00 € (q) " (q)
€ " e )
E= /(dk) ggﬂ 2,”2/ dqee__l_isi) £ e_eT(q) +1 ( )
or
B(0) - 50) = 2 [ erta) (1 - ann ) @
(c)Deﬁn.eu-—-;1'%‘1-%soq=,/‘—1MF;;‘EE and dg = MTf/“- s0
k2 (M 3 5 0 B 2)
E(T) - E(0) = —75 (735‘) T2 /0 du/u (1 — tanh w) (
1



so the specific heat = ?WE R

2.

Section 5 - Problem 6
Millis

Y - ATI

i o ————— 0 R v




Columbia University

Department of Physics
QUALIFYING EXAMINATION

Friday, January 17, 2020
2:00PM to 4:00PM
General Physics
Section 6. Various Topics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 6 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 6 (General Physics), Question 2, etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 81” x 11”7 paper (double-sided) you
have prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!

Section 6 Page 1 of 8




5. Please read the entire question before beginning and note that there are equations at the v
end of the problem. The hints are there to benefit you but you can still do the problem
in any way you choose.

In this part of the problem, we will explore both the Poisson distribution and the normal
distribution and their relation. All given equations can be used without proof - in all
other cases you must show your work!

The Poisson distribution (form is given at the bottom of the page) is a discrete probability
distribution defined for integers k£ > 0 and mean X > 0 that expresses the probability of
a given number of events occurring in a fixed interval of time and/or space. In physics,
we often have an expectation for a given rate of some type of event so we use the Poisson
distribution to describe the probability of a given number of events occurring in a given
time interval assuming that our expectation is the rate multiplied by our given time
interval. The Poisson distribution is a limit of the Binomial distribution with p — 0 and
N — oco.

Below is an image of the Poisson distribution for different mean values.

0.40— T
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0.30f | i I
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- i,
% 0.20f | . : v
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(a) Show that the mean (expectation value) and the variance of the Poisson distribution
are both equal to ).
Hint 1: Use may use the exponential summation given below.
Hint 2: Remember that 02 = (z?) — (.

(b) Show that in the limit of A >> 1 and k ~ ) (k on the order of \) that the Poisson
distribution can be approximated by the normal distribution.
Hint I: Let z =k = A(1 + 6) where we know & << 1 since k ~ ).
Hint 2: You will need to use Stirling’s Approximation (
Hint 3: To approximate (1+z)e=
logarithm to get it in a more conven

Dark matter experiments, in their simples
expectation for your background over so

see equations below).
Where T << 1, we can first use the natura]
ient form and then exponentiate the result.

t form, are counting experiments. You have an
me period of time 7. These experiments then

Section 6 p " f8. .
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take data over this time period T and look at the total of number of events to determine
whether they see a statistically significant excess of events or not (this excess of course
being from dark matter interactions!).

Consider two detectors. In detector A we expect 1 background event in a single year
and in detector B we expect 1000 background events in a year. We turn on our detectors
and after one year we find that detector A counted a total of 11 events and detector B
saw a total of 1010 events. Assume that we know our background perfectly.

(c) What is the probability that each detector’s number of events is from background?

(d) If we can safely reject the background hypothesis, then it is possible that we can
claim a direct detection of dark matter. In which detector is it less likely that the
signal can be explained by background alone? Explain your reasoning.

Discrete Expectation: (k%) = Z k*p(k)
P

© yk
- Exponential Sum: Z %— =e
k=0

Expanding the Natural Log: In(1 +z) = 3 (-1)"=

ﬁ n=0 "
i . ko—A

e

Poisson Distribution: p(k) = 7 x50 k=0,1,2...
1 2 2
Normal Distribution: p(z) = e~ @ m)*/20
p(E)=——
Stirling Approximation: n! ~ v27n (E)n
e
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6. Estimate the rms magnitude of the electric field associated with blackbody radiation in
thermal equilibrium at room temperature. Note: 0 = 5.7 x 1078 W/(m?-K*).
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Section 6 - Problem 1

Dodd

2020 Quals General Question (Dodd)

Consider an idealized Sun and Earth as blackbodies in otherwise empty space. The Sun has a surface
temperature Ts = 6,000 K, and heat transfer processes on the Earth are effective enough to keep the
Earth’s surface temperature uniform. The radius of the Earth is Rg = 6.4 x 10° m, the radius of the Sun is
Rs = 7.0 x 108 m, and the Earth-Sun distance is d = 1.5 x 10" m. The mass of the Sun is M = 2.0 x 10%°

kg.
a). Find the temperature of the Earth.
b). Find the radiation force on the Earth.

c). Compare these results with those for an interplanetary granule in the form of a spherical, perfectly
conducting blackbody with a radius R = 0.1 cm, moving in a circular orbit around the Sun at a radius
equal to the Earth-Sun distance d.

d). At what distance from the Sun would a metallic particle melt if its melting temperature T, = 1,550
K?

e). For what size particle would the radiation force calculated in c). be equal to the gravitational force
from the Sun at a distance d?

NOTE: Need values for o (Stefan-Bolztmann constant) and G for this problem.

Solution:
a). Total power radiated from the Sun is:
Ps = (4nR2)oeTs
where & = 1 for a blackbody.

Of this, the fraction that hits the Earth is ;’%sz, and in equilibrium, with the Earth also radiating as a

blackbody, then:

2\, T4 __-HR% = (4nR%)o Tz
(4nR$)oTs awd? ) EJ®TE

Rs
TE - J;&TS =290 K

e




Section 6 - Problem 1

: Dodd
b). The radiation pressure is:
4 4MR% -
Prog = T¢ (:;—dg) =7.1x% 107 N/m?

with the corresponding force on the Earth being:
Fg = (TRE)Prag = 9.1 X 108 N

c). For the small granule, the temperature will be the same since it the same distance from the Sun as
the Earth is. The radiation pressure on the granule is:

Fp = mR¥)Prgg = 22 % 102N
d). From the result of part a). we can write for the distance d,, at which the granule will melt:

P (Ts)z 5.2 X 10°
=—=R¢(=—)] =5. m
m 2 S 7‘7'1_
e). Assume a spherical particle of mass m and radius r, then when the radiation and gravitational forces

balance we have:

GMsm
a2

= (mz)Pfad
wherem = §7tr3p and we can assume a density of say p = 5.0 x 10° kg/m>, then:

- 3 Praddz

= = =4
r 2 GMop 86%x107' m
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Section 6 - Problem 3
Nicolis

1 General

When it rains, is it better to run fast or to walk slowly (assuming you don’t want to get too wet)?
Motivate your answer with an actual computation. In particular, you should compute the total amount
of water hitting you as you move from A to B, as a function, among other things, of your speed. You
can adopt several simplifications:

1. You are a parallelepiped, gliding smoothly at constant (horizontal) speed v.

2. The density of rain drops is so high that you can treat rain as a continuum, with constant mass
density prain, moving vertically downwards at constant speed Vpain.

3. The angle at which rain hits you does not matter, nor does its speed relative to you: you are
perfectly absorbent.

4. Ignore, of course, relativistic effects.

Solution

Under the assumptions spelled out in the problem, it is better to run as fast as possible, v — oo.

Calling L the distance between A and B, the time it takes to cover that distance is T = L/v. Now
call Siop the surface area of the top face of the parallelepiped (one’s head), and Sgont the surface area of
the front face of the parallelepiped (one’s body). During T', the mass of water that falls on one’s head
iS prainVrainStopl’, Which is proportional to 7', and thus inversely proportional to v. On the other hand,
the mass intercepted by one’s body is independent of T' and thus of v: it is simply prainStrontL, the total
mass of water contained in the ‘tube’ of cross section Sgont connecting A to B.

So, the total mass of rain intercepted (and thus absorbed) in moving from A to B at constant speed
v is

Urai
Mot = prainL - [Stop :m + Sfront] (1)
As a function of v, this is schematically

Mot ~ const +1/v (2)

which is minimized for v — oo.
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Pinczuk

General Section 5: condensed matter

Consider normal modes of vibration of a linear chain of identical atoms of mass M in the
harmonic approximation. Assume that coupling between atoms exist only for nearest
neighbor atoms. Thsse couplings are represented by single equal springs with force constant
K. Normal modes have wave vector k and frequency .

(a) Write the equation of motion for displacements u of normal modes and obtain the
normal mode frequencies @(k) as function of wave vector |k|=k.

(b) Longitudinal normal modes have u [ k and transverse modes have u | k. How many
longitudinal modes and transverse modes exist for each value of wave vector.
Why are modes with wave vectors k and —k degenerate? ’

(c) Show that for long wavelengths the equation of motion reduces to a continuum elastic
wave equation. What is the speed of sound?

(d) Use the cyclic boundary conditions to obtain the density of states of modes. How
many modes are in the first Brillouin zone of the linear chain?

(e) In a Debye model w(k) is approximated by a linear dispersion ®(k)=Csk, where Cg is the
speed of sound in the chain. Obtain the specific heat due to longitudinal vibrations of the
chain of identical atoms in the Debye approximation and obtain the expression for the heat
capacity (specific heat at constant volume) in the limit of T— 0.
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Aprile

General Section, Part II

Please read the entire question before beginning and note that there are
equations at the end of the problem. The hints are there to benefit you but
you can still do the problem in any way you choose.

In this part of the problem, we will explore both the Poisson distribution
and the Normal distribution and their relation. All given equations can be
used without proof - in all other cases you must show your work!

The Poisson distribution (form is given at the bottom of the page) is a
discrete probability distribution defined for integers k¥ > 0 and mean A > 0
that expresses the probability of a given number of events occuring in a fixed
interval of time and/or space. In physics, we often have an expectation for
a given rate of some type of event so we use the Poisson distribution to
describe the probability of a given number of events occuring in a given time
interval assuming that our expectation is the rate multiplied by our given
time interval. The Poisson distribution is a limit of the Binomial distribution
with p = 0 and N — oo.

Below is an image of the Poisson distribution for different mean values.

0.40— . ,
0.35}
0.30}

<025}

* 0.20}

s
0.15}
0.10}
0.05}
0.00

i Spow that the mean (expectation value) and the variance of the Poisson
distribution are both equal to ).

Hint 1: Use may use the exponential summation given below.
Hint 2: Remember that o2 = (z2) — (z)2.

2. lS:’hf)w that. in .the hmlt of A>>1and k ~ X (k on the order of A) that the
oisson distribution can be approximated by the Normal distribution.

1
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Aprile '

Hint 1: Let z = k = A(1 + 6) where we know § < 1 since k ~ A.

Hint 2: You will need to use Stirling’s Approximation (see equations be-
low).

Hint 3: To approximate (1+z)% where £ < 1, we can first use the natural
logarithm to get it in a more convenient form and then exponen-
tiate the result.

Dark matter experiments, in their simplest form, are counting experi-
ments. You have an expectation for your background over some period of
time T. These experiments then take data over this time period T and look
at the total of number of events to determine whether they see a statisti-
cally significant excess of events or not (this excess of course being from dark
matter interactions!).

Consider two detectors. In detector A we expect 1 background event in
a single year and in detector B we expect 1000 background events in a year.
We turn on our detectors and after one year we find that detector A counted
a total of 11 events and detector B saw a total of 1010 events. Assume that
we know our background perfectly.

3. What is the probability that each detector’s number of events is from
background?

4. If we can safely reject the background hypothesis, then it is possible
that we can claim a direct detection of dark matter. In which detector
is it less likely that the signal can be explained by background alone?
Explain your reasoning.

Discrete Expectation: (k%) = ", k%p(k)
Exponential Sum: Y50 At = *
Expanding the Natural Log: In(1+z) = 3 oo (—1)"HE

Poisson Distribution: p(k) = ’\—k;!i, A>0,k=0,1,2,..
)2
Normal Distribution: p(z) = 7271;;2:6‘—'5)‘20”
Stirling Approximation: n! ~ v27rn (2)
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Section 6 - Problem 6
Zelevinsky

GENERAL PHYSICS

Blackbody radiation.

Estimate the rms magnitude of the electric field associated with blackbody
radiation in thermal equilibrium at room temperature. Note: ¢ = 5.7 x 1078
W/(m?K*).




Section 6 - Problem 6
Zelevinsky

GENERAL PHYSICS

Blackbody radiation (BBR): SOLUTION.

Assuming unity emissivity, the power radiated by a blackbody surface is
PBBR =0. AT‘4 ) (1)

where T = 290 K is the temperature and A is the surface area.
On the other hand, the power transported by an electric-field wave is given
by the Poynting vector S as

pp=§.j{=‘4i(E2).l.l

clo 22" @

where c is the speed of light and pg is the permeability of free space. (The first

factor of % accounts for the fact that half of the BBR photons are directed toward

the surface; the second factor of % estimates the projection of the outward-going

photons’ average direction onto A: to be precise, I 72 05 6 sin 6d6 = 3)
Setting Pggr = Pp, we find

VIE?) = 2T* /a5 % 8 V fem. 3)
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