"Electroweak physics in the forward region"

Marek Sirendi, University of Cambridge

The LHCb Electroweak Physics Working Group has an ongoing program of measurements of the inclusive W, Z, and Z+jets cross sections and of the charge asymmetry in W production. Measurements of $W \rightarrow \mu \nu \mu$ and $Z \rightarrow \mu \mu$ (ee) have been carried out at 7 and 8TeV. The 2011 dataset has been used to measure production cross sections in $Z \rightarrow \tau \tau$ and $Z \rightarrow \mu \mu$+jets with work on $W \rightarrow (e, \tau) \nu$ (e,\tau) ongoing. Measurements of these decay channels at 13TeV are also in progress. Recently, the forward-backward asymmetry in $Z \rightarrow \mu \mu$ decays was used to extract the effective weak mixing angle - a fundamental parameter of the SM. Also, a first observation of top quark production in the forward region was made with a significance of 5.4\sigma.

The precision measurements of W/Z production performed at LHCb act as tests of QCD and electroweak theory in unprobed regions of $x - Q^2$ phase space. The LHCb detector is unique in the angular coverage of some of its subdetectors and is, therefore, complementary to the general purpose detectors, ATLAS and CMS. The current work thus gives crucial knowledge and experience, acting as a proof of principle for these measurements and prospective new physics searches in the forward region. Since the detector has high precision tracking, calorimetry, and a muon system close to the beamline, measurements extend up to boson rapidities of 4.5. Consequently, partons with extremely low ($x \sim 10^{-4}$) and high ($x \sim 0.1$) momentum fractions are probed. This enables these measurements to be used in constraining PDF sets, which has an indirect impact on all measurements made at the LHC.