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Department of Physics

QUALIFYING EXAMINATION

Wednesday, January 11, 2012
3:10PM to 5:10PM

Modern Physics
Section 4. Relativity and Applied Quantum Mechanics

Two hours are permitted for the completion of this section of the examination. Choose
4 problems out of the 5 included in this section. (You will not earn extra credit by doing an
additional problem). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer booklet(s)
which question you are answering (e.g., Section 4 (Relativity and Applied QM), Question 2,
etc.).

Do NOT write your name on your answer booklets. Instead, clearly indicate your Exam
Letter Code.

You may refer to the single handwritten note sheet on 81
2
” × 11” paper (double-sided) you

have prepared on Modern Physics. The note sheet cannot leave the exam room once the
exam has begun. This note sheet must be handed in at the end of today’s exam. Please
include your Exam Letter Code on your note sheet. No other extraneous papers or books
are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or recov-
ering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good Luck!
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1. Consider an isolated spin-1 ion in a crystal. Due to a particular crystal field, the spin
Hamiltonian can be described by

H̃ = AJ2
z + ∆

(
J2

x − J2
y

)
where ~J is the spin-1 operator. Here, A and ∆ are constants and A � ∆ > 0.

(a) Ignoring small terms in the xy-plane (i.e., set ∆ = 0), find the eigenvalues and
eigenvectors in spin-1 space. Show that some eigenstates are degenerate.

(b) Now consider a finite but small ∆, such that we can use the second term in the
Hamiltonian as the perturbation term. With this perturbation, the degeneracy in
(a) is lifted. Find out the eigenvalues and eigenvectors up to first order in ∆.

Hint: The lowering and raising operators are defined as

J± = Jx + iJy

J± |j; mz〉 = h̄
√

j(j + 1)−mz(mz ± 1) |j; mz〉
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2. Tritium, 3H, is highly radioactive and decays with a half-life of 12.3 years to 3He by the
emission of an electron and an electron anti-neutrino from its nucleus. The electron’s
average kinetic energy is 5.7 keV. Explain why its departure can be treated as sudden in
the sense that the electron of the original tritium atom barely moves while the ejected
electron leaves.

Calculate the probability that the newly-formed 3He atom is in an excited state, by
evaluating 〈1, 0, 0; Z = 2|1, 0, 0; Z = 1〉. Here the notation gives the n, l,m values for
the electronic state.
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3. Consider a hydrogen atom. The spin-orbit interaction is written as:

Hso = A~S · ~L,

where ~S is the spin of the electron, ~L is the orbital angular momentum, and A =
(e2/2m2c2r3).

(a) Describe in words the origin of the spin-orbit interaction.

(b) Construct the basis of wave functions that diagonalize Hso.

(c) Obtain the spin-orbit interaction energies for hydrogen in the state with radial
quantum number n = 2.
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4. A hypothetical particle has negative squared mass such that we can write m = iµ where
µ is a real quantity with units of mass. In all other respects, the particle satisfies the rules
of special relativity, though sometimes in surprising ways. In answering the questions
below you are encouraged to use natural units.

(a) Find expressions for the energy, E, and momentum magnitude, p, of the particle in
terms of its velocity β.

(b) What are the maximum and minimum velocities for the particle and at what values
of E and p are the maximum and minimum velocities attained?

(c) Suppose a measurement of the velocity of the hypothetical particle yields β − 1 ≈
2 × 10−5 for E ≈ 30 GeV. Estimate the value of µ that would be consistent with
the measurement.

(d) Consider the free propagation of our hypothetical particle in the “lab” frame at
some velocity β. Suppose we define two events along the spacetime trajectory
of the particle separated by a time ∆t as observed in the lab frame. Show that
it is possible to find another Lorentz frame in which the particle appears to be
propagating backward in time. Evaluate the kinematics of the particle in that
frame. How might an observer in that frame understand these results?
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5. In this problem, please measure energies in MeV (mega-electron volts), velocities in units
of the speed of light c and rest mass in units of MeV/c2. Consider a collision between
two particles, each of rest mass m = 0.5MeV/c2. In this problem you are asked to
compare two reference frames: the center of mass reference frame and the ‘lab’ reference
frame in which one of the two particles is not moving. Suppose that in the center of mass
reference frame the two particles are initially moving along x with velocities v = ±0.8c.
In the lab frame one particle has velocity v = 0 and the other particle has a velocity
which is directed along negative x.

(a) Suppose that the collision is elastic, and that after the collision the two particles
emerge moving along the ±y direction in the center of mass frame. Please give the
angles made by the trajectories of the two particles with respect to the x axis, in
the lab frame.

(b) Suppose now that what collides are a particle and its antiparticle, so that the two
colliding particles annihilate and produce two photons which, in the center of mass
frame, move off in the ±y direction. Please find the momenta of the two photons,
in the lab frame.
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Applied Quantum: Spin-1 in a crystal field  

 

Consider an isolated spin-1 ion in a crystal. Due to a particular crystal field, the spin 

Hamiltonian is now described by 

  

)(
~ 222

yxz JJAJH   

 

where J


 is spin-1 operator. Here, A and  are constants and A >> . 

 

 

(a) Ignoring small term in x-y plan (i.e., set  = 0), find out the eigen values and eigen 

vectors in spin-1 space. Show that some eigen states have degeneracy. 

 

 

(b) Now consider the finite but small E, such that we can use the second term in the 

Hamiltonian as the perturbation term. With this perturbation, the degeneracy in (a) is 

lifted. Find out the eigen values and eigen vectors up to the first order in . 

 

[Hint: The lowering and raising operators are defined as  

yx JiJJ   

zzzz mjmmjjmjJ ;)1()1(;    ] 
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Applied Quantum Mechanics Quals Problem

Robert Mawhinney
December 4, 2011

Tritium, 3H, is highly radioactive and decays with a half-life of 12.3 years to 3He by the
emission of an electron and an electron anti-neutrino from its nucleus. The electron’s average
kinetic energy is 5.7 keV. Explain why its departure can be treated as sudden in the sense that
the electron of the original tritium atom barely moves while the ejected electron leaves.

Calculate the probability that the newly-formed 3He atom is in an excited state, by evaluating
〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉. Here the notation gives the n, l,m values for the electronic state.
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Solutions

The binding energy of the H is just 13.6 eV and, by the virial theorem, its kinetic energy is

half of this, so the speed of the ejected electron is larger by a factor of
√

5700/6.8 ≈ 29 >> 1.
Hence the orbital electron barely moves in the time required for the ejected electron to get clear
of the atom.

After the decay, the orbital electron is still in the ground state of H. The amplitude for it to
be in the ground state of the new Hamiltonian is 〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉. In the postiion
representation, this is

〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉 =
1

2

(
4

a0

2

a0

)3/2 ∫
d3x e−2r/a0 Y 0

0 e−r/a0 Y 0
0 (1)

= 4
23/2

a30

∫
dr r2 e−3r/a0 (2)

=
4

33
23/2

∫
dx x2 e−x (3)

=
4

33
23/22! (4)

= 0.838 (5)

Alternatively, one can count the places where a0 enters, since for 3He, one will have a′0 = a0/2.
The inner product would be one for the ground state of H, but this is modified by

23/2 ∗ 23

33
= 0.838 (6)

The first factor is from the overall normalization of the wavefunction. The second comes from
changing e−2r/a0 for the H normalization integral by e−3r/a0 for the overlap integral.

So the probability of being in an excited state is

P = 1− |〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉|2 = 1− 64× 8/272 = 0.298 (7)

2
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General-Section 4:  Applied Quantum Mechanics 

 
Solution to Problem 3 

 
 
 
(a) In the rest frame of the electron the proton is moving with velocity –v, that 
produces a magnetic field B ~ L. The coupling of this field to the intrinsic 
magnetic moment from S is the spin-orbit interaction Hso. 
  
(b) Rewrite the spin-orbit interaction Hso = AS.L    as 
 
  Hso = (A/2) (J2 – L2 – S2)   (1) 
  
where J is the total angular momentum. The states with quantum numbers J, L, 
and S make this Hamiltonian diagonal. This states can be written as: |j, m, l, s>,  
where m are the components of j. 
 
In this basis the matrix elements of Hso are: 
 

<Hso> = <A(r)>nl 2 {j(j+1) –l(l+1) – ¾}    (2) 
 
 
 
(c) For n=2 the allowed values of l are 0 or 1. The allowed values of j are l  ½.  
 
The value j = ½ is obtained from l = 0,1. There are two terms.  
 
The value j =  is obtained from l = 1 only (one term here). 
 
There are also two matrix elements: 
 
<A(r)>2,0 = A0      (3) 
 
and 
 
<A(r)>2,1 = A1      (4) 
 
The spin-orbit interaction energies are obtained with Eqs. (2) (4). 
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A hypothetical particle has negative squared mass such that we can write
m = iµ where µ is a real quantity with units of mass. In all other respects, the
particle satisfies the rules of special relativity, though sometimes in surprising
ways. In answering the questions below you are encouraged to use natural
units.

• Find expressions for the energy, E, and momentum magnitude, p of
the particle in terms of its velocity β.

There are multiple ways to evaluate these relations. The most
robust is to use β = p/E with p ≡ |~p|. Then, starting from
E2 = p2 +m2 = p2 − µ2,

E2 = E2β2 − µ2 ⇒ E2 = −
µ2

1− β2
.

Then, for E to be real, 1 − β2 ≤ 0 or β ≥ 1 (the limiting
values at one will be addressed below). Then,

E =
µ

√
β2 − 1

. (1)

Similarly,

p2

β2
= p2 − µ2 ⇒ p2

(
1

β2
− 1

)
= −µ2.

If β > 1, the factor multiplying p2 is negative so we can absorb
the minus sign on µ2. Then

p2

(
1−

1

β2

)
= µ2 ⇒ p2

(
β2 − 1

)
= µ2β2

so, finally

p =
µβ

√
β2 − 1

(2)

• What are the maximum and minimum velocities for the particle and
at what values of E and p are the maximum and minimum velocities
attained?

Part a shows that β ≥ 1. From the results of part a, E clearly
increases as β → 1 from above, and at β = 1, E = ∞ and

1
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p =∞. As β increases, E and p both decrease monotonically
with E → 0 as β → ∞. Since there is no natural cutoff
on either E or β we must conclude that β can increase to
∞ at which the particle will have zero energy. However, the
momentum approaches a constant value p→ µ as β →∞.

• Suppose a measurement of the velocity of the hypothetical particle
yields β − 1 ≈ 2× 10−5 for E ≈ 30 GeV. Estimate the value of µ that
would be consistent with the measurement.

We have β = 1 + δ with δ a small number compared to one.
Then 1/

√
β2 − 1 ≈ 1/

√
2δ. Using the value given,

1
√

2δ
≈

1

2
× 105/2 ≈ 0.5× 100× 3.

So
µ ≈ 2× (30 GeV)/300 = 0.2 GeV. (3)

• Consider the free propagation of our hypothetical particle in the “lab”
frame at some velocity β. Suppose we define two events along the
spacetime trajectory of the particle separated by a time ∆t as observed
in the lab frame. Show that it is possible to find another Lorentz frame
in which the particle appears to be propagating backward in time.
Evaluate the kinematics of the particle in that frame. How might an
observer in that frame understand these results?

Use the Lorentz transformation

∆t′ = γB∆t− βBγB∆x,

where βB is the boost velocity and γB is the associated Lorentz
factor, and where ∆x = β∆t. Then,

∆t′ = ∆t γB(1− βBβ).

Then, if
ββB > 1, or βB > 1/β (4)

(which can happen because β > 1) ∆t′ < 0 and it appears
as though the order of events is reversed. But, in that same
frame,

E′ = γBE − βBγBp = E γB(1− ββB),

2



and if βB > 1/β, E′ < 0 as well! So to the observer in the
new frame it looks like a negative energy particle propagating
backward in time, equvalent (in a simplistic way, but also
correctly) to a positive energy particle propagating forward
in time. So, no violation of causality.
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RELATIVITY

In this problem, please measure energies in MeV (mega-electron volts), velocities in units
of the speed of light c and rest mass in units of MeV/c2. Consider a collision between two
particles, each of rest mass m = 0.5MeV/c2. In this problem I ask you to compare two
reference frames: the center of mass reference frame and the ’lab’ reference frame in which
one of the two particles is not moving. Suppose that in the center of mass reference frame
the two particles are initially moving along x with velocities v = ±0.8c. In the lab frame
one particle has velocity v = 0 and the other particle has a velocity which is directed along
negative x.

(a) Suppose that the collision is elastic, and that after the collision the two particles
emerge moving along the ±y direction in the center of mass frame. Please give the angles
made by the trajectories of the two particles with respect to the x axis, in the lab frame.

The transformation which takes the problem from the COM frame to the lab frame is a
boost by velocity v = 0.8c in the +x direction. The relevant parts of the 4-momentum in
the COM frame are  E

px

py

 =

 mc2γv

0
mvγv

(1)

and the relevant parts in the lab frame are (denoting for the moment the velocity of the
transformation by v0  E

px

py

 =

 mc2γvγv0

−mv0γvγv0

mvγv

(2)

thus the angle is

(3) θ = ∓ArcTan

[
vγv

v0γvγv0

]
= ArcTan

1
γv

where in the last equality I used v0 = v

θ = ∓ArcTan(0.36)

(b) Suppose now that what collides are a particle and its antiparticle, so that the two
colliding particles annihilate and produce two photons which, in the center of mass frame,
move off in the ±y direction. Please find the momenta of the two photons, in the lab frame.

1
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2 RELATIVITY

Now the final momenta of the two photons are ±mcγvŷ but the kinematics of the Lorentz
transformation is the same so we have

plab
y = pCOM

y = ±mcγv

plab
x = −γ2

vmv

so
θ = ArcTan

mcγv

mvγ2
v

= ArcTan
1

.8 ∗ .6
≈ ArcTan(2)




