Columbia University
Department of Physics
QUALIFYING EXAMINATION
Friday, January 15, 2010
1:00 PM - 3:00 PM

General Physics (Part I)
Section 5.

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 6 included in this section. Remember to hand in only
the 4 problems of your choice (if by mistake you hand in 5 or 6 problems, the highest
scoring problem grade(s) will be dropped). Apportion your time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the answer
booklet(s) which question you are answering (e.g., Section 5 (General Physics),
Question 2; Section 5 (General Physics), Question 6; etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code.

You may refer to the single handwritten note sheet on 8 1/2x 11”7 paper (double-sided)
you have prepared on General Physics. The note sheet cannot leave the exam room
once the exam has begun. This note sheet must be handed in at the end of today’s
exam. Please include your Exam Letter Code on your note sheet. No other extraneous
papers or books are premitted.

Simple calculators are permitted. However, the use of calculators for storing and/or
recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!

Section 5

lof 7




1. The Crab pulsar has a rotational period p = 33 msec and a period derivative of p =
4 x 10713,

(a)

(b)

Section 5

Making appropriate estimates of the mass M and radius R for the Crab pulsar,
estimate the current luminosity of the Crab pulsar.

The Crab pulsar emits via magnetic dipole radiation, Lm = kw*. Assuming that the
Crab pulsar was born with an initial period p; < Prow (w; > Wnow)- Use the current
values of p and p to estimate the age of the Crab pulsar.

Make a dimensional estimate of the luminosity of the Crab pulsar, due to magnetic
dipole radiation, in terms of the magnetic field B, and other pulsar parameters. Use
this estimate of the luminosity, along with the L determined in (a), to estimate the
magnetic field of the Crab pulsar.
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2. Imagine a one-dimensional chain of N atoms (lattice spacing ‘a’) where alternate atoms
have different masses as pictured below:

QOQOQOQOQOQOQOQOQO

Assume that the two masses are nearly equal:
my =m(l+ A) mg = m(l — A)
where A < 1.
Solve for the normal modes (phonons) of the chain by the following steps:

(a) First solve for the case A = 0 (equal masses) as follows. The Hamiltonian of the

system is given by
H = Z — 4 mwo Z(r — Tp1)?

n

Here p,, is the momentum of the nt" atom and z, is its displacement from its equi-
librium position X, = na. The potential energy is thus determined by the relative
position of the nearest neighbors. This can be solved by changing variables to Fourier

space:
Tp = E :xkezkna and Pn = E pke—zkna
k k

3 — s 21
with k =0, x5, £ 7,

i
Na’ ’:ta’

Show that in Fourier space the Hamiltonian reduces to

H = Z PPk + %mw,% Z TrT_k
k

Find wg, the dispersion relation between the energy w and momentum k. Sketch your
result. What is this kind of phonon called?

(b) Now solve for the case of unequal masses by expanding the Hamiltonian to first order
in A. The zeroth order in A results in the phonon mode you have found in part (a).
What is the first order Hamiltonian?

(¢) Solve the first order Hamiltonian you found in (b) in exactly the same way as you did
in (a). What is the new dispersion relation? Sketch the results for the two modes.
What is the new phonon mode called?
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3. In many experiments, the surface of the sample or detector being used has to be placed
in a vacuum environment to avoid contamination from air molecules.

(a)

(b)

Section 5

Estimate the pressure in a vacuum chamber (in atmospheres) where one air molecule
hits every surface atom of the walls of the chamber every second. Assume that air is
composed of only nitrogen molecules (molecular weight 28) that travel at 500 m/s.
Assume also that a typical atom on the wall of the chamber has a size of 1 Angstrom
(1 atm = 1.013 x 10° Pa).

Such low pressures are reached by the use of vacuum pumps. A vacuum pump
operates by displacing a certain volume C per second from the chamber which is
then exhausted externally (imagine a chamber where the volume of the chamber is
continuously increased by C per second, resulting in a continuous drop in pressure).
How long will it take a vacuum pump with a displacement of 1 liter per second to
reduce the pressure in a 100 liter chamber from atmosphere to the pressure required
in (a)? Assume that temperature is held constant throughout.
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4. A perfect fluid is described by the continuity and Euler equations, which govern the time-
evolution of the density and velocity fields p(Z, t), ¥(Z,1):

P+ V- (p?) =0

. N 1=

Here we assume that the pressure p is a given function of p:

p = p(p)-

(a) Linearize the equations of motion above, for small fluctuations §p and §%, about the
homogeneous, static background configuration

p=po, 7=0.
b) Consider plane wave-like configurations for dp and dv:
P
Sp(Z,t) = 6p. ()™ + c.c, §T(E, 1) = 50, (1)e™T + c.c

Solve the linear equations you derived in part (a) for dp.(t) and 67, (2).
Hint: decompose d7 into transverse and longitudinal parts.

(c) What do these solutions describe physically?
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5. We wish to detect the presence of a thin membrane suspended in vacuum by reflection
of a light beam impinging at normal incidence. Model the material as a thin slab of
homogeneous, transparent material with a refractive index n and a thickness d.

W\

Incident Reflected
Beam Beam
Refractive index n } d<<A

(a) Find an explicit expression for the reflectance R of the slab in the limit of d < A,
where \ is the vacuum wavelength of light.

(b) Estimate the minimum effective thickness of a membrane that could, in principle,
be detected in this fashion. Assume typical parameters for a dielectric material,
that we have available a 1 uW visible laser, and that we are able to detect 109/s
photons of reflected light. Use the relation derived above or, if unavailable, a suitable
approximate expression.
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6. Consider the rotational degree of freedom of a dilute gas of diatomic CO molecules at
temperature 7. Suppose that the moment of inertia of each molecule is /.

(a) Write an explicit expression for the (quantum) partition function Zpo for the rota-
tional degree of freedom of one molecule. Although you may not be able to reduce
it to closed form, make sure that all quantities in Z.o are defined so that it could be
evaluated numerically.

(b) Write a general expression for the heat capacity per molecule associated with rota-
tional motion in terms of Zyot.

(c) Obtain an analytic expression for the asymptotic behavior of the rotational contri-
bution to the heat capacity per molecule in the limit of low temperature.

(d) For CO molecules, approximately how low does the temperature have to be so that
the relation derived in part (c) is applicable. Use suitable estimates of the relevant
physical parameters.
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Condensed Matter ! /)’)LJ{ /7&(/
Imagine a one-dimensional chain of atoms where alternate atoms have different masses as pictured )’}"/CHZ(
below:
Oo0Oo00Oo00Oo00O00O0o0Oo00O00o
m, 2 M My 1 2 1 My ..
Assume that the two masses are nearly equal:
my; =m(1—A)

where A< 1.
Solve for the normal modes (phonons) of the chain by the following steps:

1. First solve for the case A= 0 (equal masses) as follows. The Hamiltonian of the system is given by

2
; 1
H=) 2h b 2maf ) G = Te)?
n n

here p, and x, are the momentum and position of the n atom in the chain. The potential energy is thus
determined by the relative position of the nearest neighbors. This can be solved by changing variables to

Fourier space
Xy = Z x etn
k

Pn = Z e~
k

Show that in Fourier space the Hamiltonian reduces to

Dip—x , 1
H= Z S+ -Z-maﬁZxkx_k
n

n

Find wy, the relationship (dispersion) between the energy w and momentum k. Sketch your result.
What is this kind of phonon called?

2. Now solve for the case of unequal masses by expanding the Hamiltonian to the first power of A. The
zeroth order in A results in the phonon mode you have found in (1). What is the first order Hamiltonian?

3. Solve this first order Hamiltonian exactly as in (1). What is the new dispersion relation? Sketch the
results for the two modes. What is the new phonon mode called?




Solution

2
H= 2—1— + Emw(z)Z(xn - xn+1)2
n n
use
Xy = Z xkeikn
k
Dy = Z pke—-zkn
k
Dk e—ikn Di e—ik’n 1 ) 2
H = Z o + Emw(z) z (Z xkelkn — Z xkeik(n+1)>
nk' n \k k
Use the fact that
Z e~ikng=ik'n — 5k 4 k')
n
to simplify:
_ 1 . - . N
H= Z szlr?nk + Emw‘z’ Z 2(x e xp eK'm — x; eHm 3, @K (4D))
K nkk’'
_N\Pl-x 1,
=) 5 + > M 2x % (1 — cositk))
nkk’
pep—k , 1
= %—— + -Z-ma),z( Z XX
k

where

Wy = wo+/ (1 — cositk)) = wyq Isirﬁ?(z.g-)l

ACOUSTIC MODE




1

(2)

Y S oW W WP
2m(1+4) 2 noom
odd n odd n

2
2 P} 1
+ 2m(1l—A) + ’2—m(1 - A)wg E (xn - xn+1)2
even n

even n

Di 1
=D I O+ Gmed ) (- %2+ (D)
n odd n
= HO + HA

Here Hy is the zeroth order Hamiltonian and

2
/ 1
Hy= ﬁ(—l)"“A + Emw(z) E (% — Xp41)%(=1D)"A
n n

(3) Once again, Fourier transform and use —1 = ¢i"

DiPr—r
2m

1 .
Hy= + -Z-mw(Z; Z 2x1 X7 (1 + cositk))
%

The new mode is therefore given by

Wy = wo/ (L F COSTI)) = wg Icos'z@g-)|

A

/ _ OPTICAL MODE
N
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In many experiments, the surface of the sample or detector being used has to be placed in a vacuum
environment to avoid contamination from air molecules.

(a) Estimate the pressure in a vacuum chamber (in atmospheres) where one air molecule hits every
surface atom of the walls of the chamber every second. Assume that air is composed of only nitrogen
molecules (molecular weight 28) that travel at 500 m/s. Assume also that a typical atom on the wall of
the chamber has a size of 1 Angstrom.

{b) Such low pressures are reached by the use of vacuum pumps. A vacuum pump operates by displacing
a certain volume C per second from the chamber which is then exhausted externally (imagine a chamber
where the volume of the chamber is continuously increased by C per second resulting in a continuous
drop in pressure). How long will it take a vacuum pump with a displacement of 1 liter per second to
reduce the pressure in a 100 liter chamber from atmosphere to the pressure required in (a)? Assume
that temperature is maintained constant throughout.




Solution

(a) Momentum of nitrogen molecule = %v

where M= 28/1000 kg, N = 6 X 10%, v = 500 m/s

If one molecule bounces off the surface atom per second, the net force per second is 2—:,4-17 and pressure

P__ZMv
T NA

_2%0.028 %500
T 6% 1023 x 1020

=5x10"3Pa =5 » 1078 Atmospheres
(b) Assume the chamber has a volume V,. The rate of change of the number of molecules in the
chamber dN is given by (assuming the pump is displacing air out of the chamber)

dN dv 1dv c

At constant temperature the number of molecules in the chamber is proportional to the pressure, so

dP C
P —Vodt

Therefore
£,
P(t) = Poe Yo
Plug in the numbers

t
—— T 8 =
100 In(5 * 10®) = 2000 seconds
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1 General: Fluids — spectrum of small fluctuations

A perfect fluid is described by the continuity and Euler equations, which govern the time-evolution
of the density- and velocity-fields p(Z,t), U(Z, t):
0 , (1)

p+ V. (pﬁ)
i1 (5 V)7 = -%%. @)

I

Here we assume that the pressure p is a given function of p:

p=p(p) . (3)

1. Linearize the equations of motion above, for small fluctuations dp, 44 about the homoge-
neous, static background configuration

p=po, T=0. (4)
2. Consider plane wave-like configurations for dp and 6v:
5p(Z,t) = 6p(t) €F% tcc.,  OU(T,t) = 6iL(t) €% + coc. (5)

Solve the linear equations you derived in item 1 for dp.(t) and §7,(t). Hint: decompose §0
into a transverse part and a longitudinal one.

3. What do these solutions describe, physically?

Solution

1. At linear order in dp, §7, egs. (1,2) reduce to

§p+poV 67 = 0 (6)
S R
i+ —=c2Viép = 0, (7
Po
where we used that the background has ¥ = 0, that p is a function of p, so that
- dp =
==V
Vp=Vp, (8)
and we defined c? as
dp
2 —




2. For configurations of the form (5) the linearized equations reduce to
6+ poik -6, = 0 (10)

. 1 -
0V, + —2ikdp, = 0. (11)
Po

We now project 6, and the second equation onto the parallel and transverse (w.r.t. E)
directions. We get two coupled equations for §p and vl

8pe + poikdull = 0 (12)
1
soll + p cikdp, = 0, (13)
and a trivial equation for §ot: .
6y =0 ' (14)

By using either of egs. (12, 13) in the other, one gets an ordinary wave equation for dp and
61}1,', with solutions

) oD )
5pu(t) = dpe~™t gl = p_f)’cs e =k, (15)

The relative phase and amplitude are fixed by either of egs. (12, 13).
The solution to eq. (14) is instead
57+ = const . (16)

3. The oscillatory solutions (15) obviously describe sound waves: they are longitudinal (67 || k)
compressional (6p # 0) modes. The transverse fluctuations instead describe vortices. More
precisely, the linearized version thereof. Indeed in real space transversality means

V.6t =0, (17)

which implies that o is a curl: L |
vt =V xA. (18)

The trivial dynamics (16) matches the fact that a vortex in constant rotation is a solution.

2 General: Astrophysics — the Hubble flow

Consider a self-gravitating, infinitely extended fluid. Assume that the fluid has negligible pressure.
The relevant equations are the continuity and Euler ones for the fluid’s dynamics, and the Poisson
equation for the Newtonian potential. Call p the fluid’s density, ¥ its velocity field, and ® the
gravitational potential per unit mass.
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OPTICS PROBLEM

We wish to detect the presence of a thin membrane suspended in vacuum by
reflection of a light beam impinging at normal incidence. Model the material as a
thin slab of homogeneous, transparent material with a refractive index nand a
thickness d.

incident Reflected
Beam Beam
A 4
Refractive index n } d<<A

(a) Find an explicit expression for the reflectance R of the slab in the limit of
d << A, where A is the vacuum wavelength of light.

(b) Estimate the minimum effective thickness of a membrane that could in
principle be detected in this fashion. Assume typical parameters for a
dielectric material; that we have available a 1 uW visible laser and; that we
are able to detect 109/s photons of reflected light. Use the relation derived
above or, if unavailable, a suitable approximate expression.
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Consider the rotational degree of freedom of a dilute gas of diatomic CO molecules
at temperature T. Suppose that the moment of inertia of each molecule is L

STATISTICAL MECHANICS PROBLEM

(a) Write an explicit expression for the (quantum) partition function Zy: for the
rotational degree of freedom of one molecule. Although you may not be able
to reduce to closed form, make sure that all quantities in Zr, are defined so
that it could be evaluated numerically.

(b) Write in terms of Z.: a general expression for the heat capacity per molecule
associated with rotational motion.

(¢) Obtain an analytic expression for the asymptotic behavior of the rotational
contribution to the heat capacity per molecule in the limit of low
temperature.

(d) For CO molecules, approximately how low does the temperature have to be
so that the relation derived in part (c) is applicable. Use suitable estimates of
the relevant physical parameters.
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