Columbia University
Department of Physics
QUALIFYING EXAMINATION
Monday, January 12, 2009
3:10 PM - 5:10 PM

Classical Physics
Section 2. Electricity, Magnetism &
Electrodynamics

Two hours are permitted for the completion of this section of the
examination. Choose 4 problems out of the 5 included in this section. (You
will not earn extra credit by doing an additional problem). Apportion your
time carefully.

Use separate answer booklet(s) for each question. Clearly mark on the
answer booklet(s) which question you are answering (e.g., Section 2
(Electricity etc.), Question 2; Section 2 (Electricity etc.) Question 4, etc.)

Do NOT write your name on your answer booklets. Instead clearly indicate
your Exam Letter Code.

You may refer to the single handwritten note sheet on 8 %2 x 11" paper
(double-sided) you have prepared on Classical Physics. The note sheet
cannot leave the exam room once the exam has begun. This note sheet must
be handed in at the end of today's exam. Please include your Exam Letter
Code on your note sheet. No other extraneous papers or books are
permitted.

Simple calculators are permitted. However, the use of calculators for storing
and/or recovering formulae or constants is NOT permitted.

Questions should be directed to the proctor.

Good luck!!
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1. Calculate the spin frequency decay time, 7, of a thin ring of mass M and radius R that
hangs on a string and spins with an angular frequency w(¢) in a horizontal magnetic field
B. The ring has conductivity o, and a small cross-sectional area 7% < mR2.

Assume initially w(0) = wy and that the energy lost to Joule heating per period is small

compared to the rotation kinetic energy at all times. You can assume the string does not
exert any torque. (Hint: use (sin®f(¢)) = ¥2 over a period.)

(1)

v

v
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2. An optically active medium can rotate the plane of polarization of light. The
susceptibility tensor of such a medium can be expressed as:

Xu ine 0

— .
X = =Xy Xn 0
0 0 X,

where Y is related to the polarizability tensor in the usual fashion, P= g0X - E.In X .
X..» X, and x,, are all real. Assume a plane wave propagates in this medium in the z-
direction (which is also the 3-direction) with frequency w. Use Maxwell's equations to
establish the following.

(a) That in an optically active medium the propagating EM wave is transverse.

(b) Show the medium admits EM waves with two distinct k-vectors of magnitude kg,
kr. Find kg, k7 in terms of w and the necessary X

(c) Show that the two k-vectors kg, k; correspond to the propagation of right and left
circularly polarized EM waves.

(d) Find an expression for the rotary power = n, — n, in terms of the ..
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3. Part (a) of the figure shows two coils with self-inductances L; and L. In the relative
position shown, their mutual inductance is M. The positive current direction and the
positive electromotive force direction in each coil are defined by the arrows in the figure.
The equations relating currents and electromotive forces are

dl, dl,
= - L, —+M=2 1
& Vdt dt (1)
and
B dl, | dI,
2= — Ly Z2+M~ (2)

Given that M is always to be taken as a positive constant, how must the signs be chosen in
these equations? What if we had chosen, as we might have, the other direction for
positive current, and for positive electromotive force, in the lower coil?

Now connect the two coils together as in part (b) of the figure to form a single circuit.
What is the inductance L’ of this circuit, expressed in terms of L;, L, and M? What is
the inductance L" of the circuit formed by connecting the coils as shown in (c¢)? Which
circuit, (b) or (c), has the greater self-inductance?

Considering that the self-inductance of any circuit must be a positive quantity, see if you
can draw a general conclusion, valid for any conceivable pair of coils, concerning the
relative magnitude of L, Lo, and M.

II_’
T T
S—
& M L' =7
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4. The N-th multipole moment of a charge distribution p(Z) is a rank-N tensor M Z}\})”"
defined as

MZ};)” = /d3a: p(Z) 2z, 2™ (1)
So, for instance, the monopole moment (N = 0) is a scalar — the total charge:
Mo = [¢2(z) = @ @
and the dipole moment (N = 1) is the familiar vector

M(il) = /d3m p(Z)xt = p’ (3)

(a) In equation (1) the position vector Z is measured with respect to a predetermined,
but arbitrary origin. Show that for a given N, the resulting value for M Z}\%“'W does

not depend on the choice of origin if and only if the lower order multipoles (those
with smaller N's) vanish.

(b) Explain why this ambiguity does not impair the multipole expansion for the
electrostatic potential.
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5. A thin, non-conducting disk of radius R is spinning around its symmetry axis with
angular velocity w. The disk is uniformly charged with a charge density per unit area of o.

(a) What is the exact expression for the magnetic field along the symmetry axis of the
disk as a function of the distance, z, from the disk?

(A useful integral may be | (T—f—;‘iT)T = (%))

(b) For distances far from the disk, the disk looks like a magnetic dipole. What is the
effective magnetic dipole moment?

(c) Show that the expressions in part (a) and (b) agree at large distances.

(The American physicist Henry Rowland in 1868 used such a rotating disk to show that
the magnetic field due to moving charge distributions is identical with the magnetic field
due to an electric current having the same geometry.)

10

v ™
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Quals 2009: Electromagnetism (M.Gyulassy)

L. Calculate the spin frequency decay time, 7, of a thin ring of mass A and radius R that hangs
on a string and spins with an angular frequency «(t) in a horizontal magnetic field B. The
. <. 9
ring has conductivity. ¢ and a small area 72 < 7R2.
Assume initially (0) = o and that the energy lost to Joule heating per period is small
compared to the rotation kinetic energy at all times. (Hint: use (sin? 9(t)) = 1 over a period.)

Solution

The rotational kinetic energy is KE(t) = $Iow? where [, = %AJRQ for the ring. When the
ring is at an angle 6(f) with respect to the horizontal constant B field, there is a magnetic
flux, ®(¢) = BaRcos6(t) through the loop with df/dt = w(t). Faraday’s law says that
the induced EMF E(27R) = I(t)) = —1/e d®/dt = 7 BR?w(t)/c sinf(t), where the ring
resistance is 2 = (27 R)/(omr?).

The induced alternating current I(t) dissipates energy according to Joule heating at a rate
P =1V = QI(t)* = (d/dt)?/Q = ( BR?w(t)/c sind(t))*(orr?) /(27 R). Over a period, the
time averaged power dissipated using < sin? >= Sis < P >= IkIE lfgwl(t)//(‘)Q(UW/z'Q)/(‘ZW 1.

The rotational kinetic energy decreases according to dKE/dt = —P. Using M = prr? (27 R)
in terms of the mass density p, $omr? (2 RY R (2wi) = ~(rBR*w(t)/c)*(omr?) /(27 R).

Therefore , & = —w/7 where the spin relaxation time is 7 = dpc? /(B%g).

Check dimensions: [rhoc?] = En/Vol. [B?] = En/Vol whereas [o] = 1/Time.
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Solution

_ Since in part (a) of the figure, both coils have the samne conventions for
current flow and electromotive force. and since they are aligned so that
increasing the maenciic flux through one increases the flnx through the
other, minus signs must be chosen for the mutual inductance term.

dl; dly
E1=~Li— — M—> 3
! Yt dt (3)
and 0 i
SQ = L_g(fj) - :\[(71 ‘\/l‘
dt dt ‘

. If the convention for I> and & is reversed, then the mutual inductance
enters with a plus sign.

dl dly
=—-Li—+M—
& TR (5)
and i dl
@ty 1
Eo=—Lp—+M—
? o M (6)
. For part (b) of the figure, we have
dI ,
= —(L1+L2+M(+M)E (8)
giving L' = Ly + Lo +2M
4. For part (c) of the figure, we have
E = &+ & (9>
dl

giving L' = L, + Ly — 2M
. Circuit (b} has the greater self-inductance

. To keep the self-inductance of the combined circuit positive, we need
Ly+ Ly —2M > 0, or M < «/LyL,. This follows since Ly + Lo +
2VI L, = (VI £ VI)? > 0.
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The N-th multipole moment of a charge distribution p(Z) is a rank-N tensor A,JZ.’\T.'JE“J'A\' defined as

N2 IN 2 S AN S 2 AN
M = /(/ wp(@yata ety
So. for instance, the monopole moment (N = 0) is a scalar--the total charge
; B Al Y = (
My = /(1 X)) =4,
and the dipole moment (N = 1) is the familiar vector

My = /dar p(T)a' =p'.

(19)

(20)

(21)

1o eq. (77) the pusition vector @ is measured with respect to a predetertuined, but arbitrary
origin. Show that for a given N, the resulting value for f\[(l,l\l)z” does not depend on the

choice of origin 2f and only if the lower order multipoles {(those with smaller N’s) vanish.

2. Explain why this ambiguity does not impair the multipole expansion for the electrostatic

potential.

Solution

1. Suppose we choose a different origin O', displaced by @ with respect to our original choice

O. Then our new definition of the multipole moments is

;\[/(}‘\7;“’*\‘ = /d“.r p(D) (T a)y (T+ay  (F+a.

For instance, for the new dipole moment we have

7= /(Z:z.'l;/)(.f) (F+a)=p+Qa,

(23)

which indeed is equal to the original dipole moment p if and only if the monopole moment
vanishes. It is clear from eq. (77) that the same conclusion Lolds for all N's. Indeed, by.
expanding the products in eq. (??) and collecting terms homogeneous in @ we get schemat-

ically

/\Jl(lf\,l)]\ = My "+ (M a) 1 4 (Myogya @)™ W 4 o (Mgya---a)®

“iN

bl

(24)

where each term denotes a suitable tensor combination (actually, totally symmetric) of the
quantities in parentheses. It is clear that the new multipole moment coincides with the
original one for a generic displacement @ if and only if all the lower order multipole moments

vanish.




The multipole expansion can be thought of as an expansion in powers of (d/r), where d is
the typical size of the charge distribution, and 7 is the distance from the charge distribution
10 the observation point T, Of course r so defined is ambiguous. at the level of o1 ~ d, for
it is not specified which point inside the charge distribution we are computing the distance
from. This is exactly equivalent to the ambiguity discussed above for the multipole moments.
In other words, by changing our choice of origin, we change both the multipole moments
and . in such a way that the potential at Fops computed via the multipole expansion is
unaltered. The bottom line is that, as long as we compute rowith vespect fo the same orgm
that we use for computing the multipole moments. the multipole expansion is consistent,

and origin-independent.

1
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Quals Problem 1 M. Shaevitz - E4m
Fall, 2008

A thin, non-conducting disk of radius R is spinning around its symmetry axis with angular
velocity @. The disk is uniformly charged with a charge density per unit area of 6.

a) What is the exact expression for the magnetic field along the symmetry axis of the
disk as a function of the distance, z, from the disk?

3 { // 2 - ) 2 \\
L o dr Fr42z0)
(A useful integral may be j : e \ )

N

(rP+2° ) o)
b) For distances far from the disk, the disk looks like a magnetic dipole. What is the
effective magnetic dipole moment?

¢) Show that the expressions in part a) and b) agree at large distances.

(The American physicist Henry Rowland in 1868 used such a rotating disk to show that
the magnetic field due to moving charge distributions is identical with the magnetic field
due to an electric current having the

same geometry.) ©® v/
m
B

A 4

Solution:
The current density of the disk is z
. odsdr di ds
di = = 0 — = OV = OOF
dr dr dt :

a) The parallel component of the
magnetic field of a current loop along

formula:

the axis can be derived from the Biot-Savart d B = -&M

4 ¥

2y ] 2 i
as. - [’ Mo 2dl : ¥ dl = Mo di _
0 477(,, +Z)\/r2+zz 2(r2+22) 2
One can then integrate over the disk to obtain the total field
5 - J-ze L1 di . R’ (ra)o'cjl;)
0 2(rz+zz) 0 2(r2+zz)‘

B ;zoa)ch—R rdr uoa)a( rt+22° T B ,uoa)cr( R +27° _24
2 \ RZ L

2 o2, 2V 2 /
vt

2
‘/VZJ_v'
\ = 2Z

’y

ol
Fit T2

<

AN /0
b) Calculate the magnetic moment from ix Area

nwo R

o= '[OR aridi :jok ar? (roo)dr =




¢)

Calculating B, forz0U R gives B, :’%ﬂ((Rz +2ZZ)(R2 +zz)v”2 _22)
4 2 | )
= £609 (R2+2ZZ)—1— ]—1R7 +‘3‘£“"‘1—2Z :/uoa)g Rﬂ
2 z 2 z" 8 24 ) ) 42}
_ My Mapoie _ _ nwo R’

Foradipole B = T Mo =
2r =z

which agrees with part b)






