Columbia University
Department of Physics
QUALIFYING EXAMINATION
Friday, January 18, 2008
11:10 AM -1:10 PM

General Physics (Part II)
Section 6.

Two hours are permitted for the completion of this section of the examination.
Choose 4 problems out of the 6 included in this section. (You will not earn extra
credit by doing additional problems). Apportion your time carefully.

Use separate answer booklet(s) for each question. Cleaﬂy mark on the answer
booklet(s) which question you are answering (e.g., Section 6 (General Physics),
Question 3; Section 6(General Physics) Question 6, etc.).

Do NOT write your name on your answer booklets. Instead clearly indicate your
Exam Letter Code.

You may refer to the single handwritten note sheet on 8 2 x 117 paper (double-
sided) you have prepared on General Physics. The note sheet cannot leave the
exam room once the exam has begun. This note sheet must be handed in at the end
of today’s exam. Please include your Exam Letter Code on your note sheet. No
other extraneous papers or books are permitted.

Simple calculators are permitted. However, the use of calculators for storing and/or
recovering formulae or constants is NOT permitted. Questions should be directed
to the proctor.

Good luck!!
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1. A black hole of mass M can be thought of, schematically, as a spherical region of radius ry,
=2GM (working in ¢ = 1 units) where nothing that enters can escape. ry is known as the
Schwarzschild radius. Also, whenever some mass (or energy) M is confined within a sphere of
radius ry, the mass undergoes gravitational collapse and becomes a black hole with the same

mass.

Consider a gas of black holes, all with identical masses M, uniformly distributed inside a large
cubic box with volume V = L*, Assume that the black holes have negligible velocities.

(a) Show that the black-hole gas can never be so dense as to have the typical distance
between two nearby black holes of the order of their Schwarzschild radius.

(b) For a given L and M, estimate the maximum allowed number density of black holes.

[For both questions ignore all numerical factors like 2 and T.]
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2. Consider a system of non-interacting particles of spin %2. Each particle has mass m, and is
constrained to move with non-relativistic momentum on the very flat surface of superfluid liquid
He kept at temperature T — 0. The components of the particle momentum are restricted to the
(x,y) plane that defines the surface of the liquid. The interactions between particles and the liquid
He substrate are negligible. The area is A = L?, where L is the length of the surface along the x-
and y-directions. The number of particles per unit area is n.

(a) Obtain the energy levels E, assuming cyclic boundary conditions. [In cyclic boundary
conditions the wavefunctions at position (x,y) are identical to those at positions (x+L, y),
(x, y+L), and (x+L, y+L)].

(b) Use the results in (a) to obtain the expression for the density of states g(E). Note that

g(E)dE gives the number of single-particle energy levels in the range between E and
E+dE.

(c) Consider the limit of temperature 7 = 0. Obtain the energy difference between the lowest
and the highest energy states that are occupied by the particles.

(d) What is the average energy per particle at T = 0?

(e) The temperature is raised slightly, so that AT is much smaller than the average energy per
particle. Describe in words the changes that occur in the system. What is the expected
temperature dependence of the change in the total energy of the system?
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3. Estimate very roughly, from the heat of vaporization of water (L ~ 2x10°> Joules/gram),
Avogadro’s number (N4 ~ 6x10**) and whatever natural constants you might need:

(a) The surface tension of water;
(b) The speed of very small wavelength (4) ripples on an otherwise flat surface of water;
(c) The lowest frequency (density preserving) oscillation of a drop of water with mass M:

(d) The radius r of capillary tubes inside a tree which bring water from the tree’s roots to its
leaves 30m higher up.
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4. Consider a spherical (radius R) container enclosing very hot (temperature T) fully ionized
hydrogen with total mass M.

(a) Estimate roughly the total photon energy contained by the sphere.

(b) About how long will it take for most of the photons of part (a) to escape due to diffusion
of photons to the sphere surface? Assume that photons interact with the ionizing
hydrogen only by Thomson scattering on free electrons.

(c) Use (a) and (b) to estimate the photon luminosity (L) from the sphere.

(d) Suppose the sphere is held together by gravitational attraction of the hydrogen and kept
from collapsing by the kinetic motion of the electrons and protons. Show that
L =AM"
with A and the exponent « independent of R, T and M. Give A and & in terms of the
“other constants”.

[Express results in terms of M, R, T and other constants from among electron mass (m,),

hydrogen mass (my), Boltzmann constant (kg), electron charge (e), Planck constant/2n (%), speed
of light (¢), and gravitational constant (G).]
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5. Consider a 3-dimensional metal, like Na, where one conduction electron comes from one
atom. The crystal structure has one atom per unit cell. The lattice constant of this system is about
3 Angstroms, and the melting temperature is about 700 K. The atomic weight is about 50, (These
numbers are given just to qualitatively understand the situation. It may not be necessary to use
them in answering the following questions.)

Consider the specific heat of this system.

(a) Show that the specific heat from phonons is proportional to 7° at low temperatures
(Debye model). Estimate the minimum wavelength and hence maximum wavenumber of
phonons in the metal.

(b) Show that the specific heat from the conduction electrons is proportional to T at low
temperatures. We assume that the effective mass of electrons in this metal is equal to that
of a bare electron.

(c) At T = 300 K, which one is larger: the specific heat from the lattice or that from the
conduction electrons? Describe your reasoning.

(d) When the effective mass of the electrons is 100 times that of the bare electron, how does
the specific heat from the electron system change from the value for the bare electron
mass?

(¢) In the so-called Einstein model, where all phonons are taken to have the same

characteristic frequency ap, derive the temperature dependence of the specific heat in the
limit of low temperature.
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6. The flux of solar radiation incident on the earth’s atmosphere is 1370 Watts per square meter.
About 30% of this is reflected immediately; the remainder is absorbed by the Earth, leading to an
effective solar constant of roughly 960 W/m?®. The radiation is peaked in the visual range of
frequencies.

(a) Calculate the mean temperature of the earth neglecting the effects of the atmosphere.
(b) Model the atmosphere as a single thin layer which is transparent to the solar radiation, but
which totally reabsorbs the (infrared) frequencies emitted by the Earth. Calculate the

mean surface temperature in the presence of such a layer.

(c) Assume the density of infrared absorbing gases in the atmosphere doubles. Model this as
two thin layers, and calculate the mean surface temperature.

The Stefan-Boltzmann constant o= 5.67 x 10 W m2 K™,
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2. A black hole of mass 31 can be thought of. schematically. as a spherical region of
radins ry = 2G A (we work in ¢ = 1 units) from where nothing that enters can escape. 1y
is known as the Schwarzschild radius. Also, whenever some mass (o1 energy) M is conbined
within a sphere of radius ry;, the mass undergoes gravitational collapse and becomes a hlack
hole with the same mass.

Consider a gas of black holes. all with identical masses AL, nniformly distributed inside a
large cubic box with volume V' = L3. Assume that the black holes have negligible velocitios.

q«z; (a) Show that the black-hole gas can never be so dense as to have the tvpical distance
hetween two nearby black holes of order of their Schwarzschild radius.
7 (h) For given L and Al. estimate the maximun allowed nnmber density of black holes.

[For both questions ignore all numerical factors like 2 and 7
Solution.

(a) The problem in making the gas very dense is that when we bring many black holes
together they tend to collapse into a larger black hole. Indeed if we have NV > 1 of them.
their overall mass is N A . with a corresponding Schwarzschild radius vy = Ny On
the other hand, if we imagine that their typical distance is of ovder of their radives 1y.
they all fit in a sphere of radius

R~ NYry < Nrap = ryar - :

ot
—

Hence, well before they can get so close to one another. they all collapse into a Lavger
black hole.

(b) Call n the black-hole number density. In a sphere of vadins 12 theve are ~ n 2% black
holes. their total mass is ~ nR3A/. the corresponding Schwarzschild radins is ~ n Ry
For the whole sphere not to collapse into a black hole we want that its radins be larger
than its Schwarzschild radius.

R 2 III%:;I"\[ . (())

from which we immediately get n < 1/(R*ry;). The r.hus. depends on the radins of the
sphere we consider. The bound is more stringent for larger [7. The absolute hound is
thus obtained by taking the largest possible sphere. 7~ L.

1

Mnax ™~ 75 -
L2ry

That is, the typical distance among nearby black holes is always parametrically larger
than rp. and at best of order dyi, ~ (L*ry)"/3.
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Section 6, General II,
"Temp of Earth"

Zajc

Problem: The flux of solar radiation incident on the earth’s atmosphere is 1370 Watts per
square meter. About 30% of this is reflected immediately; the remainder is absorbed by the
earth, leading to an effective solar constant of roughly 960 W /m?, The radiation is peaked in
the visual range of frequencies. a) Calculate the mean temperature of the earth neglecting the
effects of the atmosphere. b) Model the atmosphere as a single thin layer which is transparent
to the solar radiation, but which totally reabsorbs the (infrared) frequencies emitted by the
earth. Calculate the mean surface temperature in the presence of such a layer. c¢) Assume the
density of infrared absorbing gases in the atmosphere doubles. Model this as two thin layers,
and calculate the mean surface temperature.

The Stefan-Boltzmann constant o = 5.67 x 107¥W m~2 K=4.

Solution: a) The earth intercepts radiation with cross section 7R? and re-radiates with

cross section 47 R2, so in the absence of atmospheric heat blankets

1
Zéeff = oT* = 240 W/m? =567 x 10 W m 2 K™*T* = T = 255 K

b) You can solve this by drawing a picture and counting photons, which is mathematically

equivalent to

(I)O - (I)l (l)
P +P; = D5 (2)

“Won

where @y = ®.57/4 (as in part “a”), &g is the flux leaving the earth’s surface and ¥, is the
flux from one side of the thin layer. This immediately gives ®5 = 2®o, or

T =2Y* x 255 K ~ 303 K
(a fairly reasonable estimate).

c¢) Repeating, with the outermost layer labeled as “n

oy = P (3)
(I)S + (I)2 = 2(1)1 (4)
P+ = P5 | (5)

giving &g = 3Py, or
T = 314 x 255 K =~ 336 K

(1)-
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