Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-0 General Instructions</td>
<td>1</td>
</tr>
<tr>
<td>2-1 Electric Fields</td>
<td>5</td>
</tr>
<tr>
<td>Appendices</td>
<td>21</td>
</tr>
<tr>
<td>2-A Review of Error Analysis</td>
<td>21</td>
</tr>
<tr>
<td>2-B Error Analysis With Excel</td>
<td>33</td>
</tr>
<tr>
<td>2-C Advanced Error Analysis</td>
<td>37</td>
</tr>
</tbody>
</table>
General Instructions

1 Purpose of the Laboratory

The laboratory experiments described in this manual are an important part of your physics course. Most of the experiments are designed to illustrate important concepts described in the lectures. Whenever possible, the material will have been discussed in lecture before you come to the laboratory. But some of the material, like the first experiment on measurement and errors, is not discussed at length in the lecture.

The sections headed Applications and Lab Preparation Examples, which are included in some of the manual sections, are not required reading unless your laboratory instructor specifically assigns some part. The Applications are intended to be motivational and so should indicate the importance of the laboratory material in medical and other applications. The Lab Preparation Examples are designed to help you prepare for the lab; you will not be required to answer all these questions (though you should be able to answer any of them by the end of the lab). The individual laboratory instructors may require you to prepare answers to a subset of these problems.

2 Preparation for the Laboratory

In order to keep the total time spent on laboratory work within reasonable bounds, the write-up for each experiment will be completed at the end of the lab and handed in before the end of each laboratory period. Therefore, it is imperative that you spend sufficient time preparing for the experiment before coming to laboratory. You should take advantage of the opportunity that the experiments are set up in the Lab Library (Room 506) and that TAs are willing to discuss the procedure with you.

At each laboratory session, the instructor will take a few minutes at the beginning to go over the experiment and describe the equipment to be used and to outline the important issues. This does not substitute for careful preparation beforehand! You are expected to have studied the manual and appropriate references at home so that you are prepared when you arrive to perform the experiment. The instructor will be available primarily to answer questions, aid you in the use of the equipment, discuss the physics behind the experiment, and guide you in completing your analysis and write-up. Your instructor will describe his/her policy regarding expectations during the first lab meeting.
Some experiments and write-ups may be completed in less than the three-hour laboratory period, but under no circumstances will you be permitted to stay in the lab after the end of the period or to take your report home to complete it. If it appears that you will be unable to complete all parts of the experiment, the instructor will arrange with you to limit the experimental work so that you have enough time to write the report during the lab period.

Note: Laboratory equipment must be handled with care and each laboratory bench must be returned to a neat and orderly state before you leave the laboratory. In particular, you must turn off all sources of electricity, water, and gas.

3 Bring to Each Laboratory Session

- A pocket calculator (with basic arithmetic and trigonometric operations).
- A pad of 8.5×11 inch graph paper and a sharp pencil. (You will write your reports on this paper, including your graphs. Covers and staplers will be provided in the laboratory.)
- (optional) A ruler (at least 10 cm long).
- (optional) A personal laptop with Microsoft Excel for data analysis.

4 Graph Plotting

Frequently, a graph is the clearest way to represent the relationship between the quantities of interest. There are a number of conventions, which we include below.

- A graph indicates a relation between two quantities, \(x \) and \(y \), when other variables or parameters have fixed values. Before plotting points on a graph, it may be useful to arrange the corresponding values of \(x \) and \(y \) in a table.

- Choose a convenient scale for each axis so that the plotted points will occupy a substantial part of the graph paper, but do not choose a scale which is difficult to plot and read, such as 3 or 3/4 units to a square. Graphs should usually be at least half a page in size.

- Label each axis to identify the variable being plotted and the units being used. Mark prominent divisions on each axis with appropriate numbers.

- Identify plotted points with appropriate symbols, such as crosses, and when necessary draw vertical or horizontal error bars through the points to indicate the range of uncertainty involved in these points.
• Often there will be a theory concerning the relationship between the two plotted variables. A linear relationship can be demonstrated if the data points fall along a single straight line. There are mathematical techniques for determining which straight line best fits the data, but for the purposes of this lab, we will be using Microsoft Excel’s built-in fitting methods.

5 Error Analysis

All measurements, however carefully made, give a range of possible values referred to as an uncertainty or error. Since all of science depends on measurements, it is important to understand uncertainties and where they come from. Error analysis is the set of techniques for dealing with them.

In science, the word “error” does not take the usual meaning of “mistake”. Instead, we will use it interchangeably with “uncertainty” when talking about the result of a measurement. There are many aspects to error analysis and it will feature in some form in every lab throughout this course.

5.1 Inevitability of Experimental Error

In the first experiment of the semester, you will measure the length of a pendulum. Without a ruler, you might compare it to your own height and (after converting to meters) make an estimate of 1.5 m. Of course, this is only approximate. To quantify this, you might say that you are sure it is not less than 1.3 m and not more than 1.7 m.

With a ruler, you measure 1.62 m. This is a much better estimate, but there is still uncertainty. You couldn’t possibly say that the pendulum isn’t 1.62001 m long. If you became obsessed with finding the exact length of the pendulum you could buy a fancy device using a laser, but even this will have an error associated with the wavelength of light.

Also, at this point you would come up against another problem. You would find that the string is slightly stretched when the weight is on it and the length even depends on the temperature or moisture in the room. So which length do you use? This is a problem of definition. During lab you might find another example. You might ask whether to measure from the bottom, top or middle of the weight. Sometimes one of the choices is preferable for some reason (in this case the middle because it is the center of mass). However, in general it is more important to be clear about what you mean by “the length of the pendulum” and consistent when taking more than one measurement. Note that the different lengths that you measure from the top, bottom or middle of the weight do not contribute to the error. Error refers to the range of values given by measurements of exactly the same quantity.
5.2 Importance of Errors

In daily life, we usually deal with errors intuitively. If someone says “I’ll meet you at 9:00”, there is an understanding of what range of times is OK. However, if you want to know how long it takes to get to JFK airport by train you might need to think about the range of possible values. You might say “It’ll probably take an hour and a half, but I’ll allow two hours”. Usually it will take within about 10 minutes of this most probable time. Sometimes it will take a little less than 1hr20, sometimes a little more than 1hr40, but by allowing the most probable time plus three times this uncertainty of 10 minutes you are almost certain to make it. In more technical applications, for example air traffic control, more careful consideration of such uncertainties is essential.

In science, almost every time that a new theory overthrows an old one, a discussion or debate about relevant errors takes place. In this course, we will definitely not be able to overthrow established theories. Instead, we will verify them with the best accuracy allowed by our equipment. The first experiment involves measuring the gravitational acceleration g. While this fundamental parameter has clearly been measured with much greater accuracy elsewhere, the goal is to make the most accurate possible verification using very simple apparatus which can be a genuinely interesting exercise.

There are several techniques that we will use to deal with errors throughout the course. All of them are well explained, with more formal justifications, in “An Introduction to Error Analysis” by John Taylor, available in the Science and Engineering Library in the Northwest Corner Building.

5.3 Questions or Complaints

If you have a difficulty, you should attempt to work it through with your laboratory instructor. If you cannot resolve it, you may discuss such issues with:

- One of the laboratory Preceptors in Pupin Room 729;
- The Undergraduate Assistant in the Departmental Office – Pupin Room 704;
- The instructor in the lecture course, or the Director of Undergraduate Studies;
- Your undergraduate advisor.

As a general rule, it is a good idea to work downward through this list, though some issues may be more appropriate for one person than another.
Experiment 2-1
Electric Fields

1 Introduction

One of the fundamental concepts used to describe electric phenomena is that of the electric field. We explore the field concept experimentally by measuring lines of equal electric potential on carbon paper and then constructing the electric field lines that connect them.

2 Theory

2.1 Fields

A field is a function in which a numerical value associated with a physical quantity is assigned to every point in space. For example, each point in the United States may be assigned a temperature (that we measure with a thermometer at that position), as shown in figure [1]. Thus, temperature as a function of location is called the “temperature field”. The temperature field is an example of a scalar field, since the value assigned to each location is a scalar.

![Figure 1: Temperature of Different Places in the United States](image)

The electric field (as well as the magnetic field) is a vector field, because a vector (rather than a scalar) is associated with each position. The direction and magnitude of an electric field at any point in space tells you the direction and magnitude of electric force that a unit test charge would experience at this position.

A line that is formed by connecting electric field vectors and follows the direction of
the field is called a field line. A field is considered uniform if the field lines are parallel. The potential associated with such a field increases linearly with the distance traveled along the field lines.

2.2 Equipotential Contours for Gravity

A topographical map is a map with lines that indicate contours of the same height. On such a map, a mountain may look like figure 2

![Figure 2: A Topographical Map](image)

These contours of the same height \(h \) are equi-height lines or, if you think in terms of potential energy \(U = mgh \), they are equipotential lines. That is, every point on the contour has the same value of potential energy. So as you move along a contour, you do not change height, and therefore you neither gain nor lose potential energy. Only as you step up or down the hill do you change the energy.

There are a few general properties of equipotential contours:

- They never intersect. (A single point cannot be at two different heights at the same time, and therefore it cannot be on two different contours.)
- They close on themselves. (A line corresponding to constant height cannot just end.)
- They are smooth curves, as long as the topography has no sharp discontinuities (like a cliff).

2.3 Analogy between Electric and Gravitational Potentials

Electric potential is analogous to gravitational potential energy. Of course, gravitational potential energy arises from any object (with mass), whereas the electric potential arises only from charged objects.
As in mechanics, the absolute value of potential is not important. The differences in potential are the quantities that have physical meaning. In a real problem, it is usually best to choose a reference point, define it as having zero potential, and refer to potentials at all other points relative to the that point. Similarly, topographic height is usually reported relative to the reference at sea level.

2.4 Field Lines

Let’s exploit our analogy of mountains and valleys a bit further for electric fields. Electric field lines indicate the electric force on a test charge (magnitude and direction). Gravitational field lines tell us about the gravitational force on a test mass (magnitude and direction) – the direction it tends to roll down the hill and the acceleration it experiences during its journey. So if we carefully track a marble as we roll it down the hill in small increments, we can obtain a “field-line”.

What is the characteristic of a field line? Think about placing a marble on an inclined hillside. Which way will it roll if you release it? It will always roll in the direction of steepest descent, and this direction is always perpendicular to the contours that indicate equal height (which we have been referring to as equipotential lines).

So it is for the electric case: if we know the equipotential lines, we can draw the field lines such that each one is perpendicular to each equipotential line. Figure 3 and 4 both show equipotential lines (dashed lines) and the corresponding field lines (solid lines).

Figure 3: Equipotential Lines and Field Lines of a Single Charge
Keep in mind that when equipotential lines are closer together, the potential is changing faster! This means we have steeper changes in height for gravitational field lines for example.

![Equipotential Lines and Field Lines of a Pair of Opposite Charges](Image)

Figure 4: Equipotential Lines and Field Lines of a Pair of Opposite Charges

There are also a few rules for field lines:

- Field lines always begin and end on charges. (They often terminate on material surfaces, but that is because there are charges on those surfaces.)

- They never intersect each other (except at electric charges, where they also terminate).

- They always intersect equipotential lines perpendicularly!

- They are usually smoothly continuous (except if they terminate).

2.5 Metal Surfaces

It turns out that for electrical phenomena, metals are equipotentials. So, by using metals, we can impose some unusually shaped equipotential lines and determine the corresponding field lines.

Metals are always equipotentials because:

1. they are excellent conductors of electric charge, and

2. they have an abundant supply of freely moving negative charges (electrons).
Based on these two properties, we can understand that, if a field line were to penetrate a metal surface, these electrons would feel electric forces to move them through the material in the direction opposite to that of the electric field (since they are negative) until they would be forced to stop upon encountering the metal surface on the other side. Therefore, the free electrons ultimately distribute themselves along the surface of the metal so that there is a net negative charge on one side of the conductor and a net positive charge on the other (from where the electrons have fled). This realignment of the free electrons creates a field that precisely cancels the imposed field resulting in no net field, and the remaining free charges inside the conductor then feel no force and don’t move! Hence, field lines imposed from outside always end on metal surfaces (which they intersect perpendicularly), and the surface (with the entire interior) is an equipotential.

2.6 Electric Shielding Theorem

As just discussed, whenever a piece of metal is placed in an electric field, the entire metal will remain an equipotential. That is, every point in the metal will be at the same potential as every other point. No field lines penetrate through metals.

What happens if we take an enclosed container of metal of arbitrary shape, say a tin can, and put it into an electric field? Since no field gets through the metal, there must be no electric field inside the can. This means that every point inside the container, as well as all points on the container surface must be at the same potential. (If they were not, then there would be differences in the potential and therefore an electric field.)

Let’s return to our analogy of gravity equipotentials in hills and valleys, with field lines in the direction a marble would roll down the hill. Consider how a frozen lake would look on such a contour map. The surface of the lake has the same gravitational potential energy at all points, therefore if you place a marble on the frozen surface of the lake, the marble will not roll anywhere. In other words, there is no component of the gravitational field along the surface of the lake to push the marble. Similarly, there is no electric field on the inside of a closed metal container to push the charges around, and the entire interior is therefore a constant equipotential surface.

2.7 Remarks for Experts

1. The gravitational analogy operates in only two dimensions: the horizontal coordinates describing the surface of the lake. When discussing electrical fields we should, in principle, take into account all three dimensions. The analogy of the lake surface for the electrical case is the entire volume (three dimensions) of the interior of the can. For this experiment, we “cheat” a little by looking at electric field within a two dimensional world of slightly conducting paper. But the field
and potential arrangements are as one expects for electrostatic phenomena in a two dimensional system.

2. To shield electric field, we actually don’t need a metallic surface that is completely closed; a closed cage of wire mesh (Faraday cage) is sufficient. So a sedan will work like a Faraday cage, but a convertible will not since it is not closed at the top.

3. Experiments

In this experiment, we use pieces of slightly conductive paper, electrodes, and metallic paint to determine different equipotential and field configurations. Before we actually start our measurements we will have to draw the shapes on the conductive paper using the metal paint. The metal paint will take a few minutes to dry.

3.1 Preparation of the Conductive Paper

Take four pieces of conductive paper – three full-sized and one thin strip and paint on them with the metallic paint according to the following instructions. Each shape drawn by the metal paint is an equipotential curve. By connecting the pins to areas covered with paint, we can determine the field configurations between different equipotential shapes.

1. Leave the first piece of paper blank.

2. On the second piece of paper paint two parallel plates. Use a piece of cardboard provided to get sharp edges with the paint. Don’t use the rulers!

3. On the third piece of paper paint a closed loop of any shape that does not enclose an electrode.

4. Take the thin strip and paint a line on each short end of the strip.

Hints:

1. You get the best results if you stay at least 1-2 cm away from the edges of the paper. Also make sure that the pins are always in contact with the paper. (Otherwise the experiment does not work!) Be careful not to make the holes too big or the pins will no longer be in contact with the paper.
2. Give the metal paint enough time to dry! First paint all the configurations you will use on the conductive paper. While they dry, get started on the two point-charge arrangement.

3. Make sure you’re not accidentally touching the paper when making measurements!

3.2 Setup of the Voltage Source

1. “OUTPUT A” of the power supply will be used in this experiment to provide a constant potential difference of 10 volts.

2. Turn the “A VOLTAGE”, the “A CURRENT”, the “B VOLTAGE”, and the “B CURRENT” control knobs located on the right side of the front panel counterclockwise to the “MIN” position.

3. Set the “A/B OUTPUT” switch located on the upper right of the front panel to the “INDEPENDENT” setting, and set the “A/B METER” switch located between the two meters on the front panel to the “A” setting.

4. Turn the power on by using the button located on the left of the front panel.

5. Slowly turn the “A VOLTAGE” output knob until the voltage reads 10 volts. After doing this, do not make any further changes on the power supply for the remainder of the experiment. (The current meter will stay at a zero reading.)

6. Connect two cables to the “A OUTPUT (0 ∼ 20 V 0.5 A)” of the power supply (red and black poles) and then connect these cables to two of the yellow-metallic pins.

 NOTE: To use the digital multimeter as an appropriate voltmeter for this experiment: turn the multimeter power on, select “DC” (button in out position), select “VOLTS” (push button in), set range to “2 VOLTS”, and connect your voltage-measuring cables to the “V–Ω” and the “COM” jacks.

3.3 Equipotential and Field Lines

1. Connect two cables to the output of the power supply (black and red poles) and two of the yellow-metallic pins as described in the last step of the previous part. These are your output pins.

2. Take one additional cable and connect one end to the black pole of the multimeter and the other to a different metallic pin. This will be your reference pin. Take the pen-like pin and plug it into the red pole of the multimeter. This pin will be your measuring probe.
3. Experiments

Experiment 2-1

3. Take an empty sheet and put the two output pins on it to act as point-like sources. Push the pins in only a little bit and not all the way through.

4. Insert the reference pin at an arbitrary position and move the measuring probe until the multimeter shows a value of zero. This means that the two points are at the same potential. Mark this position with one of the red markers provided. Search for more equipotential points until you have enough to draw an equipotential contour connecting them.

5. Move the reference pin to a new position and construct another equipotential line.

6. Repeat for a total of about 5 equipotential lines.

7. Given these equipotential lines, draw about 5 field lines using the yellow pen. Remember that the field lines and equipotential lines always intersect perpendicularly.

8. Do your equipotential and field lines show the symmetries you would expect for this system? Just what symmetries does/should this system have?

9. Obtain the equipotential and field lines for the parallel-plate configuration as well. (Stick the two pins from the function generator into the metal paint-covered part of the paper, after the paint has dried!).

10. Are the equipotential lines as you expect them?

11. What the major problems and uncertainties in this part?

3.4 Electric Shielding Theorem

Take the sheet with the conducting loop on it, and set up an electric field. You need the reference pin as in the previous part. Put it somewhere either within the loop or on the rim of it.

Put the reference pin anywhere within the closed surface or on its rim, and check that any point within the loop has the same potential as the reference pin. This demonstrates that all points within the closed loop have the same potential.

1. What do you conclude about the shielding theorem? Does it hold or not?

2. What would happen with your readings if you had drawn the loop badly such that the loop was not perfectly closed?
3.5 Linear Increase in Potential

The purpose is to verify that the potential increases linearly with distance as you move the probe from one end to the other.

Take the small strip and connect the two output pins to the metal covered ends. This produces a potential difference between the ends. Take the reference pin and remove the pin from the end. (You only need the cable and not the pin.) Connect it to one of the output pins. Take the measuring probe and measure how the voltage increases along the center of the strip as you move further away from the reference point.

Plot a voltage vs. distance graph. And use LINEST to determine the best-fit line and intercepts.

1. Do the points fall on a reasonably straight line?
2. How do you interpret the slope and intercept of this line?
3. Is the field between the two poles uniform?
4. What would you observe if you measured the voltage near the outside of the strip rather than along the center?

4 Applications

![Sample Voltage Pattern for ECG](image)

Figure 5: Sample Voltage Pattern for ECG
The canonical example in medicine for measuring voltage potentials and displaying them (with an oscilloscope) are ECG (Electrocardiography) and EEG (Electroencephalography). The basic idea of these two standard devices is fairly simple: by measuring the potential difference in time between two points (or usually several pairs of points) one gets a nice direct insight into the activity of the heart (brain) and can therefore detect dysfunctions easily. Let us, for example, take a closer look at how an ECG works: If you record the electrical potential between two points along your chest you can record the voltage pattern shown in figure 5 (in time).

As you can see, the pattern observed can be split into different parts: At first the atrial cells are depolarized, giving the first signal (P wave). (This signal is relatively weak due to the small mass of the atrium.) After a delay one gets the QRS complex, which indicates the depolarization (wave) of the ventricles. After another delay one gets the T wave, which comes from the repolarization of the heart. What do all these results, obtained from the heart as a total, mean in terms of processes going on in the single cells? The next figure shows the measurement by your ECG in comparison to the potential in a single cell in a ventricle (obtained using a different method). First we recall that the interior and the exterior of the cell in their standard state have different ion concentrations and are therefore at different electrical potentials. (That is the zero line in the graph.) In the depolarization phase the ion channels in the cell membrane open and a flow of K^+ ions changes the potential inside the cell very rapidly. After this rapid change in potential one gets a plateau, which is mainly due to the inflow of Ca^{++} ions into the cell. (The Ca^{++} ions are much bigger than the K^+ ions, because they have a much larger hydrogen cover surrounding them and they diffuse much slower through the ion channels.) Finally in the repolarization phase the ion channels close again and the ion pumps in the cell membrane reestablish the initial ion concentrations.

How can you now take advantage of this method for a diagnosis? First of all you don’t want to take the measurements only along one single axis or plane, since e.g. if an infarction occurs on the front or back wall of your heart you are probably going to miss it. These days the usual way to get a 3-D picture of the position of the heart axis is obtained by measuring with multiple channels simultaneously between the points indicated in figure 7. (The contacts with an R are placed on the patients back.)

From the location and amplitude of the main vector (axis) one can see for example if the muscle mass is increased on one side of the heart (hypertrophy). In that case the main vector is tilted. Another thing to look for is if the depolarization and repolar-

1. Remember: The ECG only shows the electrical polarization of the heart muscle. It does not show the contraction of the heart muscle!
2. The interpretation of the U wave is still not yet 100% understood.
3. The heart axis is a simplified concept of the locations of the electrical potentials in the heart. One can think of the heart axis as a vector symbolizing the (physical) axis of the heart.
4. Also in pregnant women the heart as a total is slightly repositioned and therefore the electrical
ization was performed properly. For example if the ion channels in a certain region of the heart are destroyed by an infarction, then the electric potential between the depolarization and repolarization phase does not reach the zero level. By looking at your data you can not only locate the infarction, but also read off additional information, e.g. if the infarction killed the tissue through all of the heart wall or only parts of it. (That determines your treatment of the patient!)

You can see that you can get a lot of useful information if you look at electrical potentials (and their change in time), as shown in figure 8.

Textbook references:

1. Stein: *Internal Medicine*

2. Harrison’s *Principles of Internal Medicine*
5. Lab Preparation Examples

Field Lines: Given the following equipotential lines, draw 5-10 field lines on each diagram.
1.

2.
Shield Theorem

5. Explain in a few sentences why you might be safe inside your new Volkswagen Beetle even when struck by a bolt of lightning.
Appendices
Appendix A
Review of Error Analysis

1 Types of Uncertainties

Uncertainty in a measurement can arise from three possible origins: the measuring device, the procedure of how you measure, and the observed quantity itself. Usually the largest of these will determine the uncertainty in your data.

Uncertainties can be divided into two different types: systematic uncertainties and random (statistical) uncertainties.¹

1.1 Systematic Uncertainties

Systematic uncertainties or systematic errors always bias results in one specific direction. They will cause your measurement to consistently be higher or lower than the accepted value.

An example of a systematic error follows. Assume you want to measure the length of a table in cm using a meter stick. However, the stick is made of metal that has contracted due to the temperature in the room, so that it is less than one meter long. Therefore, all the intervals on the stick are smaller than they should be. Your numerical value for the length of the table will then always be larger than its actual length no matter how often or how carefully you measure. Another example might be measuring temperature using a mercury thermometer in which a bubble is present in the mercury column.

Systematic errors are usually due to imperfections in the equipment, improper or biased observation, or the presence of additional physical effects not taken into account. (An example might be an experiment on forces and acceleration in which there is friction in the setup and it is not taken into account!)

In performing experiments, try to estimate the effects of as many systematic errors as you can, and then remove or correct for the most important. By being aware of the sources of systematic error beforehand, it is often possible to perform experiments with sufficient care to compensate for weaknesses in the equipment.

¹If you were to engage in further research, random uncertainty is typically referred to as statistical uncertainty.
1.2 Random Uncertainties

In contrast to systematic uncertainties, random uncertainties are an unavoidable result of measurement, no matter how well designed and calibrated the tools you are using. Whenever more than one measurement is taken, the values obtained will not be equal but will exhibit a spread around a mean value, which is considered the most reliable measurement. That spread is known as the random uncertainty. Random uncertainties are unbiased – meaning it is equally likely that an individual measurement is too high or too low.

From your everyday experience you might be thinking, “Stop! Whenever I measure the length of a table with a meter stick I get exactly the same value no matter how often I measure it!” This may happen if your meter stick is insensitive to random measurements, because you use a coarse scale (like mm) and you always read the length to the nearest mm. But if you would use a meter stick with a finer scale, or if you interpolate to fractions of a millimeter, you would definitely see the spread. As a general rule, if you do not get a spread in values, you can improve your measurements by using a finer scale or by interpolating between the finest scale marks on the ruler.

How can one reduce the effect of random uncertainties? Consider the following example. Ten people measure the time of a sprinter using stopwatches. It is very unlikely that each of the ten stopwatches will show exactly the same result. Even if all of the people started their watches at exactly the same time (unlikely) some of the people will have stopped the watch early, and others may have done so late. You will observe a spread in the results. If you average the times obtained by all ten stopwatches, the mean value will be a better estimate of the true value than any individual measurement, since the uncertainty we are describing is random, the effects of the people who stop early will compensate for those who stop late. In general, making multiple measurements and averaging can reduce the effect of random uncertainty.

Remark: We usually specify any measurement by including an estimate of the random uncertainty. (Since the random uncertainty is unbiased we note it with a ± sign). So if we measure a time of 7.6 seconds, but we expect a spread of about 0.2 seconds, we write as a result:

\[t = (7.6 \pm 0.2) \text{s} \]

indicating that the uncertainty of this measurement is 0.2 s or about 3%.

2 Accuracy and Precision

An important distinction in physics is the difference between the accuracy and the precision of a measurement. Accuracy refers to the closeness of a measured value to
a standard or known value. For example, if in lab you obtain a weight measurement of 3.2 kg for a given substance, but the actual or known weight is 10 kg, then your measurement is not accurate. In this case, your measurement is not close to the known value.

Precision refers to the closeness of two or more measurements to each other. Using the example above, if you weigh a given substance five times, and get 3.2 kg each time, then your measurement is very precise. Precision is independent of accuracy. You can be very precise but inaccurate, as described above. You can also be accurate but imprecise.

For example, if on average, your measurements for a given substance are close to the known value, but the measurements are far from each other, then you have accuracy without precision.

A good analogy for understanding accuracy and precision is to imagine a basketball player shooting baskets. If the player shoots with accuracy, his aim will always take the ball close to or into the basket. If the player shoots with precision, his aim will always take the ball to the same location which may or may not be close to the basket. A good player will be both accurate and precise by shooting the ball the same way each time and each time making it in the basket.

3 Numerical Estimates of Uncertainties

For this laboratory, we will estimate uncertainties with three approximation techniques, which we describe below. You should note which technique you are using in a particular experiment.

3.1 Upper Bound

Most of our measuring devices in this lab have scales that are coarser than the ability of our eyes to measure.

![Image of a measuring scale](image)

Figure 1: Measuring Length

For example in the figure above, where we are measuring the length of an object
against a meter stick marked in cm, we can definitely say that our result is somewhere between 46.4 cm and 46.6 cm. We assume as an upper bound of our uncertainty, an amount equal to half this width (in this case 0.1 cm). The final result can be written as:

\[\ell = (46.5 \pm 0.1) \text{ cm} \] (2)

There will be many circumstances when the error is more complicated than simply the coarseness of the measuring tool. For example, if you find yourself measuring something that is very long or hard to line up properly with a meter stick. In this case, you may need to use some judgement of the best possible measurement to make and the uncertainty will be greater than the millimeter precision of your meter stick. It is always best to slightly overestimate error and allow yourself some wiggle room if you feel that better represents your measurement!

3.2 Estimation from the Spread (2/3 method)

For data in which there is random uncertainty, we usually observe individual measurements to cluster around the mean and drop in frequency as the values get further from the mean (in both directions). Find the interval around the mean that contains about 2/3 of the measured points: half the size of this interval is a good estimate of the uncertainty in each measurement.

The reasons for choosing a range that includes 2/3 of the values come from the underlying statistics of the normal (or Gaussian) distribution (see figure 4). This choice allows us to accurately add and multiply values with errors and has the advantage that the range is not affected much by outliers and occasional mistakes. A range that always includes all of the values is generally less meaningful.

Example: You measure the following values of a specific quantity:

9.7, 9.8, 10, 10.1, 10.1, 10.3

The mean of these six values is 10.0. The interval from 9.8 to 10.1 includes 4 of the 6 values; we therefore estimate the uncertainty to be 0.15. The result is that the best estimate of the quantity is 10.0 and the uncertainty of a single measurement is 0.2.

\footnote{There is a precise mathematical procedure to obtain uncertainties (standard deviations) from a number of measured values. Here we will apply a simple “rule of thumb” that avoids the more complicated mathematics of that technique. The uncertainty using the standard deviation for the group of values in our example below is 0.2.}

\footnote{Note that about 5% of the measured values will lie outside \(\pm \) twice the uncertainty}

\footnote{While the above method for calculating uncertainty is good enough for our purposes, it oversimplifies a bit the task of calculating the uncertainty of the mean of a quantity. For those who are interested, please see the appendix for elaboration and clarification.}
3.3 Square-Root Estimation in Counting

For inherently random phenomena that involve counting individual events or occurrences, we measure only a single number \(N\). This kind of measurement is relevant to counting the number of radioactive decays in a specific time interval from a sample of material, for example. It is also relevant to counting the number of left-handed people in a random sample of the population. The (absolute) uncertainty of such a single measurement, \(N\), is estimated as the square root of \(N\) (a counting measurement is expressed as \(N \pm \sqrt{N}\)). As an example, if we measure 50 radioactive decays in 1 second we should present the result as 50 \(\pm\) 7 decays per second. (The quoted uncertainty indicates that a subsequent measurement performed identically could easily result in numbers differing by 7 from 50.)

4 Relative and Absolute Uncertainty

There are two ways to record uncertainties: the absolute value of the uncertainty or the uncertainty relative to the mean value. So in the example above, you can write \(c = (5.1 \pm 0.3)\) cm or equally well \(c = 5.1\) cm \((1.00 \pm 0.06)\). You can see that if you multiply out the second form you will obtain the first, since \(5.1 \times 0.06 = 0.3\). The second form may look a bit odd, but it tells you immediately that the uncertainty is 6\% of the measured value. The number 0.3 cm is the absolute uncertainty and has the same units as the mean value (cm). The 0.06 (or 6\%) is the relative uncertainty and has no units since it is the ratio of two lengths. It’s important to use proper notation when describing uncertainty to remove any unwanted ambiguity, so make sure it’s clear when you are using relative or absolute errors.

5 Propagation of Uncertainties

Often, we are not directly interested in a measured value, but we want to use it in a formula to calculate another quantity. In many cases, we measure many of the quantities in the formula and each has an associated uncertainty. We deal here with how to propagate uncertainties to obtain a well-defined uncertainty on a computed quantity.

5.1 Adding/Subtracting Quantities

When we add or subtract quantities, the combined uncertainty is the sum of the absolute uncertainties of the constituent parts.\(^5\)

\[^5\] The propagation of random uncertainties is actually slightly more complicated, but the procedure outlined here usually represents a good approximation, and it never underestimates the uncertainty.
Take as an example measuring the length of a dog. We measure the distance between the left wall and the tail of the dog and subtract the distance from the wall to the dog’s nose. So the total length of the dog is:

\[
\text{Length} = (1.53 \pm 0.05) \text{ m} - (0.76 \pm 0.02) \text{ m} \\
= (1.53 - 0.76) \pm (0.05 + 0.02) \text{ m} \\
= (0.77 \pm 0.07) \text{ m}
\]

5.2 Multiplying/Dividing Quantities

When we multiply or divide quantities, the combined relative uncertainty is the sum of the relative uncertainties of the constituent parts.\(^6\)

Take as an example the area of a rectangle, whose individual sides are measured to be:

\[
a = 25.0 \pm 0.5 \text{ cm} = 25.0 \text{ cm} (1.00 \pm 0.02) \\
b = 10.0 \pm 0.3 \text{ cm} = 10.0 \text{ cm} (1.00 \pm 0.03) \tag{4}
\]

The area is obtained as follows:

\[
\text{Area} = (25.0 \pm 0.5 \text{ cm}) \cdot (10.0 \pm 0.3 \text{ cm}) \\
= 25.0 \text{ cm} (1.00 \pm 0.02) \cdot 10.0 \text{ cm} (1.00 \pm 0.03) \\
= (25.0 \text{ cm} \cdot 10.0 \text{ cm}) (1.00 \pm (0.02 + 0.03)) \\
= 250.0 \text{ cm}^2 (1.00 \pm 0.05) \\
= 250.0 \pm 12.5 \text{ cm}^2 \\
= 250 \pm 10 \text{ cm}^2
\]

See the appendix for more information.

\(^6\)Our calculation of the uncertainty actually overestimates it. The correct method does not add the absolute/relative uncertainty, but rather involves evaluating the square root of the sum of the squares. For more information please refer to the appendix of this lab manual.
Note that the final step has rounded both the result and the uncertainty to an appropriate number of significant digits, given the uncertainty on the lengths of the sides.

Remarks: Note that uncertainties on quantities used in a mathematical relationship always increase the uncertainty on the result. The quantity with the biggest uncertainty usually dominates the final result. Often one quantity will have a much bigger uncertainty than all the others. In such cases, we can simply use this main contribution.

5.3 Multiplication by a Constant

Multiplying a value by a constant leaves the relative error unchanged. This is equivalent to multiplying the absolute error by the same constant. For example, suppose we are trying to find the circumference of a circle knowing its radius as \(r = 1.0 \pm 0.1 \) cm with error; we would calculate the circumference with error as follows.

\[
C = 2\pi r \\
C = 2\pi (1.0 \pm 0.1) \\
C = 6.3 \pm 0.6 \text{ cm}
\] (6)

5.4 Powers and Roots

When raising a value to a certain power, its relative uncertainty is multiplied by the exponent. This applies to roots as well, since taking the root of a number is equivalent to raising that number to a fractional power.

Squaring a quantity involves multiplying its relative uncertainty by 2, while cubing a quantity causes its relative uncertainty to be multiplied by 3.

Taking the square root of a quantity (which is equivalent to raising the quantity to the 1/2 power) causes its relative uncertainty to be multiplied by 1/2. For example, if you know the area of a square to be:

\[
\text{Area} = 100 \pm 8 \text{ m}^2 = 100 \text{ m}^2 (1.00 \pm 0.08)
\] (7)

then it follows that the side of the square is:

\[
\text{Side} = 10 \text{ m } (1.00 \pm 0.04) = 10.0 \pm 0.4 \text{ m}
\] (8)

The most general rule for finding the error in powers and roots is mathematically represented as follows.

\[
f(x) = x^n \\
\frac{\sigma f(x)}{f(x)} = \left| n \right| \frac{\sigma_x}{x}
\] (9)
Where σ is the absolute uncertainty and $f(x)$ is some power or root of x.

5.5 Other Functions

If you need to calculate the error of a calculation that does not fit into one of these rules (such as trigonometric functions or logarithmic ones), here is a manual method that you can use.

Based upon the error of the quantity that you determined, you can find the maximum and minimum values of the quantity that you are calculating. The value that you found should be roughly midway between these two quantities. Then if you split the difference between the maximum and minimum you should obtain a reasonable estimate of the error. Mathematically, you would do so as follows.

$$
\sigma_{f(x)} = \frac{f(x + \sigma_x) - f(x - \sigma_x)}{2} \quad (11)
$$

Here is an example: Suppose you measure an angle to be $(47.3 \pm 0.5)^{\circ}$ and you want to determine the error of $\sin(47.3 \pm 0.5)^{\circ}$. You find that $\sin(47.3) = 0.735$. Based upon your reported uncertainty, you know that your angle could be as large as 47.8° and as small as 46.8°, and therefore you should calculate $\sin(47.8) = 0.741$ and $\sin(46.8) = 0.729$. So your calculated value is 0.735 but it can be as low as 0.729 and as high as 0.741 and therefore, if you halve the difference between 0.729 and 0.741 you get a reasonable error estimate of 0.006. So you should report your value as 0.735 ± 0.006.

6 Best-Fit Line

In most research laboratories, plotting measurements is found to be the preferred method of reviewing the data and quantitatively measuring the relationship between the experimental variables. This is effective because we often have some idea of the expected relationship between the variables a priori. In these labs, this expected relationship is almost always arranged to be a straight line. But even if we know that the ideal points fit on a precise straight line, experimentally measured data points will not always lie on a single line – because the measurements always have intrinsic uncertainty. Therefore when the points are plotted, we should include error bars on both axes to indicate the uncertainties in the data. Because real measurements do not all lie on a single straight line, there are a variety of possible lines you might choose to fit the data.

How do we know which line represents the best fit? There is an exact mathematical procedure to obtain the best-fit line, but this is usually a very tedious calculation which is outside the scope of this lab. For experiments in this course, you will be using Excel’s
Figure 3: Left: an example best-fit line. Right: the maximum and minimum possible slope from our data used to calculate uncertainty in the best-fit line. Notice how we have drawn the lines on the outer bounds of the error bars to achieve the maximum and minimum possible slope within the error bars.

built-in fitting function for data. The process for doing which will be explained in your next lab. However, if you are interested in learning how to approximate the technique without a computer, please see the appendix.

Remark: Often in our experiments the data points will not look as nice as in the above examples. One or several points may not be close to any best-fit line you try. Such anomalous points may occur, for example, because of a mistake in measuring. In such cases, it is acceptable to ignore these anomalies when estimating the best-fit line (and of course you must note this fact down in your lab report). Dropping anomalous points must be done with extreme care and only rarely (if you know the point is not physically meaningful). It is better to choose a line with as many points above the line as below. If you are not sure of your measurements, it is better to re-measure or to take more data points.

7 More than once, data points that did not behave as theory predicted turned out to be new effects and led to Nobel prizes!
7 Numerical Statistics

The previous discussions of uncertainty and error tell us how we can quantitatively describe our inability to make perfect single measurements. However, in real physics experiments, very rarely do we draw conclusions from a single data points. As such, it is essential that we know how to quantify error in sets of data. The 2/3 methods as discussed in Section 3.2 provides a good estimation of data statistics, but we can more rigorously calculate data set statistics. In statistics, a data set can be well described by the following four fundamental quantities: mean, median, mode, and standard deviation. The mean of a data set is the sum of all numbers in the data set divided by the number of points in the set. It is defined in the following manner.

\[\text{Average} \equiv \bar{x} = \frac{\sum_{i} x_i}{N} \]

(12)

The median of a data set is the middle value in a set of numbers listed in increasing order. The mode is the number that occurs the most number of times in the data set. The standard deviation describes how the numbers in the data set are distributed around the mean. It is defined as follows.

\[\text{standard deviation} \equiv \sigma = \sqrt{\frac{\sum_{i} (x_i - \bar{x})^2}{N}} \]

(13)

These four statistical quantities give us enough information to characterize the distribution of our data set. For example, let’s consider the two following Data Sets.

<table>
<thead>
<tr>
<th>Set 1</th>
<th>9</th>
<th>8</th>
<th>11</th>
<th>13</th>
<th>10</th>
<th>10</th>
<th>12</th>
<th>6</th>
<th>9</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 2</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>9.8</td>
<td>10</td>
<td>10</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Notice how both Data Sets have the same mean, median, and mode, which tells us the data points in each set are centered on the mean value of 9.8. However, the standard deviations are quite different. The large standard deviation in Data Set 2 tells us there must be outliers in the data set which increase the distribution. Whereas, the relatively small standard deviation in the first data set tells us the numbers in set 1 are clustered closely together. Standard deviation is especially important because it tells us exactly how distributed the number are around the mean value, which gives an indication of how error affects the spread of data points (for example, see figure 4 for the canonical ”bell curve” distribution, also known as the gaussian distribution). The 2/3 method as discussed in Section 3.2 is an approximation to the standard deviation since \(2/3 \sim 66\% \), which roughly corresponds to the first standard deviation (see figure 4).
Appendix 2-A
Review of Error Analysis

Figure 4: An example of a Gaussian distribution, also known as a bell curve. \(\sim 68\% \) of the data points are within 1 standard deviation, \(\sim 95\% \) of that data points are contained within 2 standard deviations, \(\sim 99.5\% \) of the data points are contained within 3 standard deviations, etc...

8 Number of Significant Digits

The number of significant digits in a result refers to the number of digits that are relevant. The digits may occur after a string of zeroes. For example, the measurement of 2.3 mm has two significant digits. This does not change if you express the result in meters as 0.0023 m. The number 100.10, by contrast, has 5 significant digits.

When you record a result, you should use the calculated error to determine how many significant digits to keep. Let’s illustrate the procedure with the following example. Assume you measure the diameter of a circle to be \(d = 1.6232 \text{ cm} \), with an uncertainty of 0.102 cm. You now round your uncertainty to one or two significant digits (up to you). So (using one significant digit) we initially quote \(d = (1.6 \pm 0.1) \text{ cm} \).

Now we compare the mean value with the uncertainty, and keep only those digits that the uncertainty indicates are relevant. Finally, we quote the result as \(d = (1.6 \pm 0.1) \text{ cm} \) for our measurement.

Suppose further that we wish to use this measurement to calculate the circumference \(c \) of the circle with the relation \(c = \pi \cdot d \). If we use a standard calculator, we might get a 10 digit display indicating:

\[
 c = 5.099433195 \pm 0.3204424507 \text{ cm} \tag{14}
\]

This is not a reasonable way to write the result! The uncertainty in the diameter had only one significant digit, so the uncertainty of the circumference calculated from the

8Another way to find the number of significant digits is to convert to scientific notation, and count the number of digits in the mantissa (also significand or coefficient). For example: for \(1.2 \times 10^2 \), there are two significant digits in 1.2.
diameter cannot be substantially better. Therefore we should record the final result as:

\[c = 5.1 \pm 0.3 \text{ cm} \]

(If you do intermediate calculations, it is a good idea to keep as many figures as your calculator can store. The above argument applies when you record your results!)
Appendix B
Error Analysis With Excel

1 Plotting with Excel

An important set of data analysis tools in Excel are plotting and linear fit functions. You will need to plot and fit data many times throughout this lab course, so make sure you are familiar with this section. Below is a walkthrough of plotting and fitting a set of data with error in excel.

1. Before plotting, you need to have 4 columns with data: x data, y data, x error data, and y error data. Make sure you have entered the information into excel.

2. First select your x data and y data (you can select multiple boxes in excel by holding down the ctrl button while selecting). Make sure to select your x data first or your x and y axes will be switched.

3. Choose the subheading “insert”, then “Scatter”, then “Scatter with straight lines and markers”. Now your x and y data should be plotted without error bars (see figure 1).

![Figure 1: Selecting x and y data and creating a lined scatter plot in excel.](image)
4. To include error bars select your chart, then click the “plus” marker on the top right of the chart. Check the box titled “error bars”. Now some basic error bars should appear on the plot. These are not based on the error bar data in your excel document, they are standard error bars.

5. To change them so they match your error bar data, select the x axis error bars on your chart, and format the error bars by clicking the “Custom” selection, then “specify value”.

6. It should now prompt you for positive error values and negative error values. Delete “[1]” from the two boxes, and select your error bars using the cursor. Your chart will now have the correct error bars (see figure 2).

7. Repeat steps 5-6 for your y data.

8. To linear fit your data, right click on your data in the plot and select “Add Trendline”. Check the “Linear”, “Display Equation on chart”, and “Display R-square value on chart” boxes.

9. Now the slope, intercept, and R squared values will be displayed on your chart. R squared is a measure of how well the line fits your data. It should be close to 1 and at the very least greater than 0.9.

Figure 2: Using your own data set to create x and y error bars in excel.
2 Finding Error in Slope

The previous steps will help plot your data, but in order to draw conclusions, you must add uncertainty. Excel has a built-in function called LINEST which finds the standard error for a linear fit. Using the same columns of data from before, the walkthrough below will help you calculate the error so you can propagate it further in the experiment.

1. The LINEST function is an array-type function, meaning it will output more than one number. Start by highlighting a 2-by-3 section of empty cells (two columns, three rows).

2. With these six cells highlighted, in the input box at the top of the screen type “= LINEST(“ and add the proper arguments. The arguments should be the list of y-values, the list of x-values, TRUE, and TRUE. For example: =LINEST(C2:C11, A2:A11, TRUE, TRUE).

3. Press CONTROL+SHIFT+ENTER. Note that on a Mac, this is CMD+SHIFT+ENTER.

Your results should have filled in that 2-by-3 section in the following way:
3 Helpful Commands

Your TA will guide you through the relevant excel commands necessary for data analysis, however a list of some relevant excel commands are listed below. A list of all excel commands can be found on the Microsoft Office website\footnote{https://support.office.com/en-us/article/Excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188}.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Returns the absolute value of a number</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>Computes the average of the selected data set</td>
</tr>
<tr>
<td>COS</td>
<td>Calculates cosine of a number</td>
</tr>
<tr>
<td>DEGREES</td>
<td>Converts radians to degrees</td>
</tr>
<tr>
<td>EXP</td>
<td>Returns e raised to the power of a given number</td>
</tr>
<tr>
<td>LN</td>
<td>Returns the natural logarithm of a number</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Finds the median of a data set</td>
</tr>
<tr>
<td>MODE.SNGL</td>
<td>Finds the most commonly occurring number in a data set</td>
</tr>
<tr>
<td>PI</td>
<td>Returns the value of pi</td>
</tr>
<tr>
<td>POWER</td>
<td>Returns the result of a number raised to a power</td>
</tr>
<tr>
<td>SIN</td>
<td>Calculates the sine of a number</td>
</tr>
<tr>
<td>SQRT</td>
<td>Calculates the square root of a number</td>
</tr>
<tr>
<td>STDEV.P</td>
<td>Calculates the standard deviation based on the entire population</td>
</tr>
<tr>
<td>STDEV.S</td>
<td>Estimates the standard deviation based on a sample</td>
</tr>
<tr>
<td>SUM</td>
<td>Calculates the sum of a data set</td>
</tr>
<tr>
<td>TAN</td>
<td>Calculates the tangent of a number</td>
</tr>
</tbody>
</table>

Table B.1: LINEST function output in Excel.
Appendix C
Advanced Error Analysis

1 Clarification of 2/3 Rule

To find the true uncertainty, we are really interested in the standard error of the mean, i.e., how likely it would be for a newly measured average value to be close to our original value were we to perform the experiment again. The proper way to figure this out would be to get say a thousand friends to perform this experiment in the same way, each using the same number of data points, and then compare the results of everyone. Each student would calculate his or her own mean, and they would likely all be clustered around some central average. We could then examine the spread of this cluster of means using the 2/3 rule, and we’d have a quantitative measure of the uncertainty surrounding any single student’s measurement.

While it’s usually impractical to get 1000 friends together to repeat an experiment a thousand times, it turns out that the uncertainty (or “standard error”) of the mean can be estimated with the following formula:

\[
\text{Standard Error Of The Mean} = \frac{\text{Uncertainty Of Single Measurement}}{\sqrt{N}}
\] \hspace{1cm} (1)

where “N” is the number of data points in your sample, and “Uncertainty Of Single Measurement” is the uncertainty calculated via the 2/3 method. The “\(\sqrt{N}\)” term should make sense qualitatively – as we take more and more data points, our measured average becomes less and less uncertain as we approach what should be the “global” mean.

2 The “Correct” Way to Add Uncertainties

The rules we’ve given for propagating uncertainties through a calculation are essentially correct, and intuitively make sense. When adding two quantities together, if one has an uncertainty of \(\Delta x\) and another has an uncertainty of \(\Delta y\), the sum could indeed range from \((x + y) - (\Delta x + \Delta y)\) to \((x + y) + (\Delta x + \Delta y)\). This implies that the proper way to find the uncertainty of \((x + y)\) is to add their respective absolute uncertainties.

There is, however, a small problem – this overestimates the uncertainty! Since \(x\) and \(y\) are equally likely to be wrong by either a positive amount or a negative amount, there’s a good chance that the respective errors of each variable will partly cancel one another out. To account for this, a more accurate way to estimate uncertainty turns out to be to add uncertainties in quadrature. This means:
Adding/Subtracting Quantities

\[(A \pm \Delta A) + (B \pm \Delta B) = (A + B) \pm \sqrt{(\Delta A)^2 + (\Delta B)^2}\]

(2)

Multiplying/Dividing Quantities

\[A \left(1 \pm \frac{\Delta A}{A}\right) \times B \left(1 \pm \frac{\Delta B}{B}\right) = (A \times B) \left(1 \pm \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2}\right)\]

(3)

While this method gives a closer approximation to what the true propagated uncertainty should be, it is clearly a more complex calculation. In the limited time available to complete your experiment and lab report, you may use the simpler, earlier uncertainty calculation method provided, and avoid this complicated calculation. But do remember that the simpler method overestimates the total uncertainty.

3 Max-Min Method for Best-fit Line

This alternate technique will show you how to draw an approximate best-fit line for a set of data without a computer and it is sufficiently precise for most purposes.

First, try to draw a line with as many points (with uncertainties included) lying above the line as below it. The gauge of how close the line is to a point is given by the uncertainty associated with that measured point. However, all the points at the left end should not lie on one side of the line with all the points at the right end lying on the other side. As a rule of thumb, roughly 2/3 of the points should have the line passing through the uncertainties (just as with the 2/3 rule).

Clearly, this “eyeball” method has inherent uncertainty, so how do we estimate the uncertainty on the slope of the best-fit line? To do this we should estimate the spread of the slope, or maximum and minimum possible slopes that one can conceivably interpret from the graph. Half the difference between the minimum and maximum slopes is a good estimate of the slope uncertainty \(\sigma = \frac{m_{\text{max}} - m_{\text{min}}}{2}\).