Colloquium: Lindley Winslow, MIT

Date: 
Mon, 04/09/2018 - 4:15pm
Location: 
428 Pupin Hall

"Axion Dark Matter and Neutrinoless Double-Beta Decay: New Techniques for New Physics"

Lindley Winslow

Massachusetts Institute of Technology

Two of the biggest open questions in the Standard Model of Particle Physics are: is the neutrino its own antiparticle, a Majorana particle and is PQ Symmetry and the resulting axion the solution to the strong CP problem. The answer to these questions is a portal to new physics and the answer to the even bigger questions of the generation of the matter-antimatter asymmetry and the nature of dark matter. My group works to address these questions with searches for neutrinoless double-beta decay and ultra-light axions. In this talk, I will review the physics that connects these two efforts, the current status of the fields, and our R&D efforts towards the next-generation experiments.

The neutrino is unique among the Standard Model particles. It is the only fundamental fermion that could be its own antiparticle, a Majorana particle. A Majorana neutrino would acquire mass in a fundamentally different way than the other particles and this would have profound consequences to particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for the rare nuclear process neutrinoless double-beta decay.  CUORE uses tellurium dioxide crystals cooled to 10 mK to search for this rare process.  In this talk, I will present the first results from this detector and highlight my group’s R&D efforts and our other efforts including axions and nanoparticle-based liquid scintillators.

About the speaker

Lindley Winslow is an experimental nuclear physicist whose primary focus is on neutrinoless double-beta decay. Neutrinoless double-beta decay is an extremely rare nuclear process which, if it is ever observed, would show that the neutrino is its own antiparticle, a Majorana particle. A Majorana neutrino would have profound consequences to particle physics and cosmology, among them an explanation of the universe’s matter-antimatter symmetry. Winslow takes part in two projects that search for double-beta decay at CUORE (Cryogenic Underground Observatory for Rare Events) and KamLAND-Zen, and works to develop new, more sensitive double-beta decay detectors. Winslow received her BA in physics and astronomy in 2001 and her PhD in physics in 2008, both from the University of California at Berkeley. After a postdoctoral fellowship at MIT, she was appointed as an assistant professor at the University of California at Los Angeles. Winslow has also been awarded a 2010 L’Oréal for Women in Science Fellowship. Winslow was appointed as an assistant professor at MIT in 2015