Department Calendar

Monday, December 11, 2017

Time Items
All day
 
2pm
"Searching for Ultralight Particles with Black Holes and Gravitational Waves"

"Searching for Ultralight Particles with Black Holes and Gravitational Waves"

Date: 
Mon, 12/11/2017 - 2:10pm
Location: 
Pupin Hall Theory Center, 8th Floor

Masha Baryakhtar

Perimeter Institute

"Searching for Ultralight Particles with Black Holes and Gravitational Waves"

The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons, from axions to dark photons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into `hydrogenic' bound states extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. One candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Current black hole spin measurements disfavor a factor of 30 (400) in axion (vector) mass; future measurements can provide evidence of a new boson. Particles transitioning between levels and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, and turn LIGO into a particle detector.

Add to calendar Add to Google Calendar
12/11/2017 - 2:10pm
 
4pm
"Coherent Coupling of Spin and Light"

"Coherent Coupling of Spin and Light"

Date: 
Mon, 12/11/2017 - 4:15pm
Location: 
428 Pupin Hall

Jason Petta

Princeton University, Department of Physics

"Coherent Coupling of Spin and Light"

Tremendous progress has been achieved in the coherent control of single quantum states (single charges, phonons, photons, and spins). At the frontier of quantum information science are efforts to hybridize different quantum degrees of freedom. For example, by coupling a single photon to a single electron fundamental light-matter interactions may be examined at the single particle level to reveal exotic quantum effects, such as single atom lasing. Coherent coupling of spin and light, which has been the subject of many theoretical proposals over the past 20 years, could enable a quantum internet where highly coherent electron spins are used for quantum computing and single photons enable long-range spin-spin interactions. In this colloquium I will describe experiments where we couple a single spin in silicon to a single microwave frequency photon. The coupling mechanism is based on spin-charge hybridization in the presence of a large magnetic field gradient. Spin-photon coupling rates gs/2p > 10 MHz are achieved and vacuum Rabi splitting is observed in the cavity transmission, indicating single spin-photon strong coupling. These results open a direct path toward entangling single spins at a distance using microwave frequency photons.

About the speaker

Jason Petta's research group focuses on quantum control of nanometer scale systems. Semiconductor quantum dots are used to isolate single electron spins, which exhibit long quantum coherence times. These systems allow quantum mechanics to be harnessed in a solid state environment for the implementation of quantum gates. They use nanofabrication to create artificially structured systems with experimentally tunable Hamiltonians that can be controlled on sub-nanosecond timescales. Recent research examines strong light-matter interactions in the circuit quantum electrodynamics architecture, with a goal of generating long-range many body entanglement. Silicon and diamond are ideal host materials for spin coherence, leading to spin coherence times that now approach 10 seconds. A major effort in the group consists of developing a scalable quantum computing architecture in isotopically purified silicon. Research advances are enabled by a tight feedback loop that links nanoscale materials synthesis and advanced transport measurements.

Add to calendar Add to Google Calendar
12/11/2017 - 4:15pm
 
Add to Google Calendar